MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac Structured version   Visualization version   Unicode version

Axiom ax-ac 9281
Description: Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC.

The unpublished version given here says that given any set  x, there exists a  y that is a collection of unordered pairs, one pair for each nonempty member of  x. One entry in the pair is the member of  x, and the other entry is some arbitrary member of that member of  x. See the rewritten version ac3 9284 for a more detailed explanation. Theorem ac2 9283 shows an equivalent written compactly with restricted quantifiers.

This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 9287 is slightly shorter when the biconditional of ax-ac 9281 is expanded into implication and negation. In axac3 9286 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 9503 (the Generalized Continuum Hypothesis implies the Axiom of Choice).

Standard textbook versions of AC are derived as ac8 9314, ac5 9299, and ac7 9295. The Axiom of Regularity ax-reg 8497 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as theorem dfac2 8953. Equivalents to AC are the well-ordering theorem weth 9317 and Zorn's lemma zorn 9329. See ac4 9297 for comments about stronger versions of AC.

In order to avoid uses of ax-reg 8497 for derivation of AC equivalents, we provide ax-ac2 9285 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 9285 from ax-ac 9281 is shown by theorem axac2 9288, and the reverse derivation by axac 9289. Therefore, new proofs should normally use ax-ac2 9285 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)

Assertion
Ref Expression
ax-ac  |-  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
Distinct variable group:    x, y, z, w, v, u, t

Detailed syntax breakdown of Axiom ax-ac
StepHypRef Expression
1 vz . . . . . . 7  setvar  z
2 vw . . . . . . 7  setvar  w
31, 2wel 1991 . . . . . 6  wff  z  e.  w
4 vx . . . . . . 7  setvar  x
52, 4wel 1991 . . . . . 6  wff  w  e.  x
63, 5wa 384 . . . . 5  wff  ( z  e.  w  /\  w  e.  x )
7 vu . . . . . . . . . . . 12  setvar  u
87, 2wel 1991 . . . . . . . . . . 11  wff  u  e.  w
9 vt . . . . . . . . . . . 12  setvar  t
102, 9wel 1991 . . . . . . . . . . 11  wff  w  e.  t
118, 10wa 384 . . . . . . . . . 10  wff  ( u  e.  w  /\  w  e.  t )
127, 9wel 1991 . . . . . . . . . . 11  wff  u  e.  t
13 vy . . . . . . . . . . . 12  setvar  y
149, 13wel 1991 . . . . . . . . . . 11  wff  t  e.  y
1512, 14wa 384 . . . . . . . . . 10  wff  ( u  e.  t  /\  t  e.  y )
1611, 15wa 384 . . . . . . . . 9  wff  ( ( u  e.  w  /\  w  e.  t )  /\  ( u  e.  t  /\  t  e.  y ) )
1716, 9wex 1704 . . . . . . . 8  wff  E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)
18 vv . . . . . . . . 9  setvar  v
197, 18weq 1874 . . . . . . . 8  wff  u  =  v
2017, 19wb 196 . . . . . . 7  wff  ( E. t ( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
)
2120, 7wal 1481 . . . . . 6  wff  A. u
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v )
2221, 18wex 1704 . . . . 5  wff  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
)
236, 22wi 4 . . . 4  wff  ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v ) )
2423, 2wal 1481 . . 3  wff  A. w
( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
2524, 1wal 1481 . 2  wff  A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
2625, 13wex 1704 1  wff  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
Colors of variables: wff setvar class
This axiom is referenced by:  zfac  9282  ac2  9283
  Copyright terms: Public domain W3C validator