MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-aj Structured version   Visualization version   Unicode version

Definition df-aj 27605
Description: Define the adjoint of an operator (if it exists). The domain of  U adj W is the set of all operators from  U to  W that have an adjoint. Definition 3.9-1 of [Kreyszig] p. 196, although we don't require that  U and  W be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-aj  |-  adj  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  { <. t ,  s >.  |  ( t : ( BaseSet `  u ) --> ( BaseSet `  w )  /\  s : ( BaseSet `  w
) --> ( BaseSet `  u
)  /\  A. x  e.  ( BaseSet `  u ) A. y  e.  ( BaseSet
`  w ) ( ( t `  x
) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) ) ) } )
Distinct variable group:    t, s, u, w, x, y

Detailed syntax breakdown of Definition df-aj
StepHypRef Expression
1 caj 27603 . 2  class  adj
2 vu . . 3  setvar  u
3 vw . . 3  setvar  w
4 cnv 27439 . . 3  class  NrmCVec
52cv 1482 . . . . . . 7  class  u
6 cba 27441 . . . . . . 7  class  BaseSet
75, 6cfv 5888 . . . . . 6  class  ( BaseSet `  u )
83cv 1482 . . . . . . 7  class  w
98, 6cfv 5888 . . . . . 6  class  ( BaseSet `  w )
10 vt . . . . . . 7  setvar  t
1110cv 1482 . . . . . 6  class  t
127, 9, 11wf 5884 . . . . 5  wff  t : ( BaseSet `  u ) --> ( BaseSet `  w )
13 vs . . . . . . 7  setvar  s
1413cv 1482 . . . . . 6  class  s
159, 7, 14wf 5884 . . . . 5  wff  s : ( BaseSet `  w ) --> ( BaseSet `  u )
16 vx . . . . . . . . . . 11  setvar  x
1716cv 1482 . . . . . . . . . 10  class  x
1817, 11cfv 5888 . . . . . . . . 9  class  ( t `
 x )
19 vy . . . . . . . . . 10  setvar  y
2019cv 1482 . . . . . . . . 9  class  y
21 cdip 27555 . . . . . . . . . 10  class  .iOLD
228, 21cfv 5888 . . . . . . . . 9  class  ( .iOLD `  w )
2318, 20, 22co 6650 . . . . . . . 8  class  ( ( t `  x ) ( .iOLD `  w ) y )
2420, 14cfv 5888 . . . . . . . . 9  class  ( s `
 y )
255, 21cfv 5888 . . . . . . . . 9  class  ( .iOLD `  u )
2617, 24, 25co 6650 . . . . . . . 8  class  ( x ( .iOLD `  u ) ( s `
 y ) )
2723, 26wceq 1483 . . . . . . 7  wff  ( ( t `  x ) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) )
2827, 19, 9wral 2912 . . . . . 6  wff  A. y  e.  ( BaseSet `  w )
( ( t `  x ) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u ) ( s `
 y ) )
2928, 16, 7wral 2912 . . . . 5  wff  A. x  e.  ( BaseSet `  u ) A. y  e.  ( BaseSet
`  w ) ( ( t `  x
) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) )
3012, 15, 29w3a 1037 . . . 4  wff  ( t : ( BaseSet `  u
) --> ( BaseSet `  w
)  /\  s :
( BaseSet `  w ) --> ( BaseSet `  u )  /\  A. x  e.  (
BaseSet `  u ) A. y  e.  ( BaseSet `  w ) ( ( t `  x ) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) ) )
3130, 10, 13copab 4712 . . 3  class  { <. t ,  s >.  |  ( t : ( BaseSet `  u ) --> ( BaseSet `  w )  /\  s : ( BaseSet `  w
) --> ( BaseSet `  u
)  /\  A. x  e.  ( BaseSet `  u ) A. y  e.  ( BaseSet
`  w ) ( ( t `  x
) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) ) ) }
322, 3, 4, 4, 31cmpt2 6652 . 2  class  ( u  e.  NrmCVec ,  w  e.  NrmCVec 
|->  { <. t ,  s
>.  |  ( t : ( BaseSet `  u
) --> ( BaseSet `  w
)  /\  s :
( BaseSet `  w ) --> ( BaseSet `  u )  /\  A. x  e.  (
BaseSet `  u ) A. y  e.  ( BaseSet `  w ) ( ( t `  x ) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) ) ) } )
331, 32wceq 1483 1  wff  adj  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  { <. t ,  s >.  |  ( t : ( BaseSet `  u ) --> ( BaseSet `  w )  /\  s : ( BaseSet `  w
) --> ( BaseSet `  u
)  /\  A. x  e.  ( BaseSet `  u ) A. y  e.  ( BaseSet
`  w ) ( ( t `  x
) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u
) ( s `  y ) ) ) } )
Colors of variables: wff setvar class
This definition is referenced by:  ajfval  27664
  Copyright terms: Public domain W3C validator