![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-hmo | Structured version Visualization version Unicode version |
Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hmo |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chmo 27604 |
. 2
![]() ![]() | |
2 | vu |
. . 3
![]() ![]() | |
3 | cnv 27439 |
. . 3
![]() ![]() | |
4 | vt |
. . . . . . 7
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . . 6
![]() ![]() |
6 | 2 | cv 1482 |
. . . . . . 7
![]() ![]() |
7 | caj 27603 |
. . . . . . 7
![]() ![]() | |
8 | 6, 6, 7 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
9 | 5, 8 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9, 5 | wceq 1483 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8 | cdm 5114 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 10, 4, 11 | crab 2916 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2, 3, 12 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 1, 13 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: hmoval 27665 |
Copyright terms: Public domain | W3C validator |