Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-finsum Structured version   Visualization version   Unicode version

Definition df-bj-finsum 33146
Description: Finite summation in commutative monoids. This finite summation function can be extended to pairs 
<. y ,  z >. where  y is a left-unital magma and  z is defined on a totally ordered set (choosing left-associative composition), or dropping unitality and requiring nonempty families, or on any monoids for families of permutable elements, etc. We use the term "summation", even though the definition stands for any unital, commutative and associative composition law. (Contributed by BJ, 9-Jun-2019.)
Assertion
Ref Expression
df-bj-finsum  |- FinSum  =  ( x  e.  { <. y ,  z >.  |  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) ) }  |->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) )
Distinct variable group:    x, y, z, t, s, f, m, n

Detailed syntax breakdown of Definition df-bj-finsum
StepHypRef Expression
1 cfinsum 33145 . 2  class FinSum
2 vx . . 3  setvar  x
3 vy . . . . . . 7  setvar  y
43cv 1482 . . . . . 6  class  y
5 ccmn 18193 . . . . . 6  class CMnd
64, 5wcel 1990 . . . . 5  wff  y  e. CMnd
7 vt . . . . . . . 8  setvar  t
87cv 1482 . . . . . . 7  class  t
9 cbs 15857 . . . . . . . 8  class  Base
104, 9cfv 5888 . . . . . . 7  class  ( Base `  y )
11 vz . . . . . . . 8  setvar  z
1211cv 1482 . . . . . . 7  class  z
138, 10, 12wf 5884 . . . . . 6  wff  z : t --> ( Base `  y
)
14 cfn 7955 . . . . . 6  class  Fin
1513, 7, 14wrex 2913 . . . . 5  wff  E. t  e.  Fin  z : t --> ( Base `  y
)
166, 15wa 384 . . . 4  wff  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) )
1716, 3, 11copab 4712 . . 3  class  { <. y ,  z >.  |  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) ) }
18 c1 9937 . . . . . . . . 9  class  1
19 vm . . . . . . . . . 10  setvar  m
2019cv 1482 . . . . . . . . 9  class  m
21 cfz 12326 . . . . . . . . 9  class  ...
2218, 20, 21co 6650 . . . . . . . 8  class  ( 1 ... m )
232cv 1482 . . . . . . . . . 10  class  x
24 c2nd 7167 . . . . . . . . . 10  class  2nd
2523, 24cfv 5888 . . . . . . . . 9  class  ( 2nd `  x )
2625cdm 5114 . . . . . . . 8  class  dom  ( 2nd `  x )
27 vf . . . . . . . . 9  setvar  f
2827cv 1482 . . . . . . . 8  class  f
2922, 26, 28wf1o 5887 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> dom  ( 2nd `  x
)
30 vs . . . . . . . . 9  setvar  s
3130cv 1482 . . . . . . . 8  class  s
32 c1st 7166 . . . . . . . . . . . 12  class  1st
3323, 32cfv 5888 . . . . . . . . . . 11  class  ( 1st `  x )
34 cplusg 15941 . . . . . . . . . . 11  class  +g
3533, 34cfv 5888 . . . . . . . . . 10  class  ( +g  `  ( 1st `  x
) )
36 vn . . . . . . . . . . 11  setvar  n
37 cn 11020 . . . . . . . . . . 11  class  NN
3836cv 1482 . . . . . . . . . . . . 13  class  n
3938, 28cfv 5888 . . . . . . . . . . . 12  class  ( f `
 n )
4039, 25cfv 5888 . . . . . . . . . . 11  class  ( ( 2nd `  x ) `
 ( f `  n ) )
4136, 37, 40cmpt 4729 . . . . . . . . . 10  class  ( n  e.  NN  |->  ( ( 2nd `  x ) `
 ( f `  n ) ) )
4235, 41, 18cseq 12801 . . . . . . . . 9  class  seq 1
( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x ) `  (
f `  n )
) ) )
4320, 42cfv 5888 . . . . . . . 8  class  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m )
4431, 43wceq 1483 . . . . . . 7  wff  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x ) `  (
f `  n )
) ) ) `  m )
4529, 44wa 384 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )
4645, 27wex 1704 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )
47 cn0 11292 . . . . 5  class  NN0
4846, 19, 47wrex 2913 . . . 4  wff  E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )
4948, 30cio 5849 . . 3  class  ( iota s E. m  e. 
NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) )
502, 17, 49cmpt 4729 . 2  class  ( x  e.  { <. y ,  z >.  |  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) ) }  |->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) )
511, 50wceq 1483 1  wff FinSum  =  ( x  e.  { <. y ,  z >.  |  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) ) }  |->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  bj-finsumval0  33147
  Copyright terms: Public domain W3C validator