Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-finsumval0 Structured version   Visualization version   Unicode version

Theorem bj-finsumval0 33147
Description: Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
bj-finsumval0.1  |-  ( ph  ->  A  e. CMnd )
bj-finsumval0.2  |-  ( ph  ->  I  e.  Fin )
bj-finsumval0.3  |-  ( ph  ->  B : I --> ( Base `  A ) )
Assertion
Ref Expression
bj-finsumval0  |-  ( ph  ->  ( A FinSum  B )  =  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) )
Distinct variable groups:    A, s,
f, m, n    B, f, m, n, s    f, I, n    ph, f, m, s
Allowed substitution hints:    ph( n)    I( m, s)

Proof of Theorem bj-finsumval0
Dummy variables  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( A FinSum  B )  =  ( FinSum  `  <. A ,  B >. )
2 df-bj-finsum 33146 . . . 4  |- FinSum  =  ( x  e.  { <. y ,  z >.  |  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) ) }  |->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) )
32a1i 11 . . 3  |-  ( ph  -> FinSum 
=  ( x  e. 
{ <. y ,  z
>.  |  ( y  e. CMnd  /\  E. t  e. 
Fin  z : t --> ( Base `  y
) ) }  |->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) ) )
4 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  x  =  <. A ,  B >. )
54fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
6 bj-finsumval0.1 . . . . . . . . . . 11  |-  ( ph  ->  A  e. CMnd )
76adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  A  e. CMnd )
8 bj-finsumval0.3 . . . . . . . . . . . 12  |-  ( ph  ->  B : I --> ( Base `  A ) )
9 bj-finsumval0.2 . . . . . . . . . . . 12  |-  ( ph  ->  I  e.  Fin )
10 fex 6490 . . . . . . . . . . . 12  |-  ( ( B : I --> ( Base `  A )  /\  I  e.  Fin )  ->  B  e.  _V )
118, 9, 10syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  _V )
1211adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  B  e.  _V )
13 op1stg 7180 . . . . . . . . . 10  |-  ( ( A  e. CMnd  /\  B  e.  _V )  ->  ( 1st `  <. A ,  B >. )  =  A )
147, 12, 13syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( 1st `  <. A ,  B >. )  =  A )
155, 14eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( 1st `  x
)  =  A )
164fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
17 op2ndg 7181 . . . . . . . . . 10  |-  ( ( A  e. CMnd  /\  B  e.  _V )  ->  ( 2nd `  <. A ,  B >. )  =  B )
187, 12, 17syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
1916, 18eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( 2nd `  x
)  =  B )
2019dmeqd 5326 . . . . . . . . 9  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  dom  ( 2nd `  x )  =  dom  B )
21 fdm 6051 . . . . . . . . . . 11  |-  ( B : I --> ( Base `  A )  ->  dom  B  =  I )
228, 21syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  B  =  I )
2322adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  dom  B  =  I )
2420, 23eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  dom  ( 2nd `  x )  =  I )
25 f1oeq3 6129 . . . . . . . . . . . . . . 15  |-  ( dom  ( 2nd `  x
)  =  I  -> 
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  <->  f : ( 1 ... m ) -1-1-onto-> I ) )
2625biimpd 219 . . . . . . . . . . . . . 14  |-  ( dom  ( 2nd `  x
)  =  I  -> 
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  ->  f :
( 1 ... m
)
-1-1-onto-> I ) )
2726ad2antll 765 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  ->  f :
( 1 ... m
)
-1-1-onto-> I ) )
2827adantrd 484 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  ( (
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  ->  f :
( 1 ... m
)
-1-1-onto-> I ) )
2928adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  ->  f :
( 1 ... m
)
-1-1-onto-> I ) )
30 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
1  =  1 )
31 simprl 794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) ) )  ->  ( 1st `  x )  =  A )
3231fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) ) )  ->  ( +g  `  ( 1st `  x
) )  =  ( +g  `  A ) )
3332adantrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( +g  `  ( 1st `  x ) )  =  ( +g  `  A
) )
34 simprrl 804 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) ) )  ->  ( 2nd `  x )  =  B )
3534adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) ) )  /\  n  e.  NN )  ->  ( 2nd `  x )  =  B )
3635fveq1d 6193 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) ) )  /\  n  e.  NN )  ->  (
( 2nd `  x
) `  ( f `  n ) )  =  ( B `  (
f `  n )
) )
3736mpteq2dva 4744 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) ) )  ->  (
n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) )  =  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) )
3837adantrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) )  =  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) )
3930, 33, 38seqeq123d 12810 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) )  =  seq 1
( ( +g  `  A
) ,  ( n  e.  NN  |->  ( B `
 ( f `  n ) ) ) ) )
40 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  m  e.  NN0 )
41 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  dom  ( 2nd `  x )  =  I )
4241adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  dom  ( 2nd `  x )  =  I )
4340, 42jca 554 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
m  e.  NN0  /\  dom  ( 2nd `  x
)  =  I ) )
44 hashfz1 13134 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN0  ->  ( # `  ( 1 ... m
) )  =  m )
4544eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  NN0  ->  m  =  ( # `  (
1 ... m ) ) )
4645ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  m  =  ( # `  ( 1 ... m ) ) )
47 fzfid 12772 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  ( 1 ... m )  e. 
Fin )
48 19.8a 2052 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  ->  E. f 
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x ) )
4948adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  E. f 
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x ) )
50 hasheqf1oi 13140 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1 ... m )  e.  Fin  ->  ( E. f  f :
( 1 ... m
)
-1-1-onto-> dom  ( 2nd `  x
)  ->  ( # `  (
1 ... m ) )  =  ( # `  dom  ( 2nd `  x ) ) ) )
5147, 49, 50sylc 65 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  ( # `  (
1 ... m ) )  =  ( # `  dom  ( 2nd `  x ) ) )
52 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  dom  ( 2nd `  x )  =  I )
5352fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  ( # `  dom  ( 2nd `  x ) )  =  ( # `  I ) )
5446, 51, 533eqtrd 2660 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( m  e.  NN0  /\ 
dom  ( 2nd `  x
)  =  I ) )  ->  m  =  ( # `  I ) )
5543, 54sylan2 491 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  m  =  ( # `  I
) )
5639, 55fveq12d 6197 . . . . . . . . . . . . . . 15  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
(  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m )  =  (  seq 1
( ( +g  `  A
) ,  ( n  e.  NN  |->  ( B `
 ( f `  n ) ) ) ) `  ( # `  I ) ) )
5756eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m )  <-> 
s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `
 n ) ) ) ) `  ( # `
 I ) ) ) )
5857biimpd 219 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m )  ->  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) )
5958impancom 456 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  ->  ( (
( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  s  =  (  seq 1
( ( +g  `  A
) ,  ( n  e.  NN  |->  ( B `
 ( f `  n ) ) ) ) `  ( # `  I ) ) ) )
6059com12 32 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  ->  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) )
6129, 60jcad 555 . . . . . . . . . 10  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  ->  ( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1
( ( +g  `  A
) ,  ( n  e.  NN  |->  ( B `
 ( f `  n ) ) ) ) `  ( # `  I ) ) ) ) )
6225biimprd 238 . . . . . . . . . . . . . 14  |-  ( dom  ( 2nd `  x
)  =  I  -> 
( f : ( 1 ... m ) -1-1-onto-> I  ->  f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
) ) )
6362ad2antll 765 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  ( f : ( 1 ... m ) -1-1-onto-> I  ->  f : ( 1 ... m
)
-1-1-onto-> dom  ( 2nd `  x
) ) )
6463adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
f : ( 1 ... m ) -1-1-onto-> I  -> 
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x ) ) )
6564adantrd 484 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) )  -> 
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x ) ) )
66 eqidd 2623 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
1  =  1 )
67 simpl 473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  ( 1st `  x )  =  A )
68 tru 1487 . . . . . . . . . . . . . . . . . . . . 21  |- T.
6967, 68jctir 561 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  ( ( 1st `  x )  =  A  /\ T.  ) )
7069ad2antrl 764 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( ( 1st `  x
)  =  A  /\ T.  ) )
71 simpl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  x
)  =  A  /\ T.  )  ->  ( 1st `  x )  =  A )
7271eqcomd 2628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  x
)  =  A  /\ T.  )  ->  A  =  ( 1st `  x
) )
7370, 72syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  A  =  ( 1st `  x ) )
7473fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( +g  `  A )  =  ( +g  `  ( 1st `  x ) ) )
75 simpl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I )  ->  ( 2nd `  x
)  =  B )
7675eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I )  ->  B  =  ( 2nd `  x ) )
7776ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) ) )  ->  B  =  ( 2nd `  x
) )
7877adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) ) )  /\  n  e.  NN )  ->  B  =  ( 2nd `  x ) )
7978fveq1d 6193 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) ) )  /\  n  e.  NN )  ->  ( B `  (
f `  n )
)  =  ( ( 2nd `  x ) `
 ( f `  n ) ) )
8079adantlrr 757 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  (
( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 ) )  /\  n  e.  NN )  ->  ( B `  (
f `  n )
)  =  ( ( 2nd `  x ) `
 ( f `  n ) ) )
8180mpteq2dva 4744 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( n  e.  NN  |->  ( B `  ( f `
 n ) ) )  =  ( n  e.  NN  |->  ( ( 2nd `  x ) `
 ( f `  n ) ) ) )
8266, 74, 81seqeq123d 12810 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `
 n ) ) ) )  =  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) )
8364impcom 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x ) )
84 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  m  e.  NN0 )
8541ad2antrl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  dom  ( 2nd `  x
)  =  I )
8683, 84, 85, 54syl12anc 1324 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  ->  m  =  ( # `  I
) )
8786eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( # `  I )  =  m )
8882, 87fveq12d 6197 . . . . . . . . . . . . . . 15  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
(  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) )  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )
8988eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) )  <->  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) )
9089biimpd 219 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  ( ( ( 1st `  x )  =  A  /\  ( ( 2nd `  x )  =  B  /\  dom  ( 2nd `  x )  =  I ) )  /\  m  e.  NN0 ) )  -> 
( s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) )  ->  s  =  (  seq 1
( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x ) `  (
f `  n )
) ) ) `  m ) ) )
9190impancom 456 . . . . . . . . . . . 12  |-  ( ( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `
 n ) ) ) ) `  ( # `
 I ) ) )  ->  ( (
( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  s  =  (  seq 1
( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x ) `  (
f `  n )
) ) ) `  m ) ) )
9291com12 32 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) )  -> 
s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) )
9365, 92jcad 555 . . . . . . . . . 10  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) )  -> 
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) )
9461, 93impbid 202 . . . . . . . . 9  |-  ( ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  <->  ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) )
9594ex 450 . . . . . . . 8  |-  ( ( ( 1st `  x
)  =  A  /\  ( ( 2nd `  x
)  =  B  /\  dom  ( 2nd `  x
)  =  I ) )  ->  ( m  e.  NN0  ->  ( (
f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  <->  ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) ) )
9615, 19, 24, 95syl12anc 1324 . . . . . . 7  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( m  e. 
NN0  ->  ( ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  <->  ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) ) )
9796imp 445 . . . . . 6  |-  ( ( ( ph  /\  x  =  <. A ,  B >. )  /\  m  e. 
NN0 )  ->  (
( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  <->  ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) )
9897exbidv 1850 . . . . 5  |-  ( ( ( ph  /\  x  =  <. A ,  B >. )  /\  m  e. 
NN0 )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  <->  E. f ( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1
( ( +g  `  A
) ,  ( n  e.  NN  |->  ( B `
 ( f `  n ) ) ) ) `  ( # `  I ) ) ) ) )
9998rexbidva 3049 . . . 4  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) )  <->  E. m  e.  NN0  E. f ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) )
10099iotabidv 5872 . . 3  |-  ( (
ph  /\  x  =  <. A ,  B >. )  ->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m
)
-1-1-onto-> dom  ( 2nd `  x
)  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x ) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) )  =  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `
 n ) ) ) ) `  ( # `
 I ) ) ) ) )
101 eleq1 2689 . . . . . . . . . 10  |-  ( t  =  I  ->  (
t  e.  Fin  <->  I  e.  Fin ) )
102 feq2 6027 . . . . . . . . . 10  |-  ( t  =  I  ->  ( B : t --> ( Base `  A )  <->  B :
I --> ( Base `  A
) ) )
103101, 102anbi12d 747 . . . . . . . . 9  |-  ( t  =  I  ->  (
( t  e.  Fin  /\  B : t --> (
Base `  A )
)  <->  ( I  e. 
Fin  /\  B :
I --> ( Base `  A
) ) ) )
104103ceqsexgv 3335 . . . . . . . 8  |-  ( I  e.  Fin  ->  ( E. t ( t  =  I  /\  ( t  e.  Fin  /\  B : t --> ( Base `  A ) ) )  <-> 
( I  e.  Fin  /\  B : I --> ( Base `  A ) ) ) )
1059, 104syl 17 . . . . . . 7  |-  ( ph  ->  ( E. t ( t  =  I  /\  ( t  e.  Fin  /\  B : t --> (
Base `  A )
) )  <->  ( I  e.  Fin  /\  B :
I --> ( Base `  A
) ) ) )
1069, 8, 105mpbir2and 957 . . . . . 6  |-  ( ph  ->  E. t ( t  =  I  /\  (
t  e.  Fin  /\  B : t --> ( Base `  A ) ) ) )
107 exsimpr 1796 . . . . . 6  |-  ( E. t ( t  =  I  /\  ( t  e.  Fin  /\  B : t --> ( Base `  A ) ) )  ->  E. t ( t  e.  Fin  /\  B : t --> ( Base `  A ) ) )
108106, 107syl 17 . . . . 5  |-  ( ph  ->  E. t ( t  e.  Fin  /\  B : t --> ( Base `  A ) ) )
109 df-rex 2918 . . . . 5  |-  ( E. t  e.  Fin  B : t --> ( Base `  A )  <->  E. t
( t  e.  Fin  /\  B : t --> (
Base `  A )
) )
110108, 109sylibr 224 . . . 4  |-  ( ph  ->  E. t  e.  Fin  B : t --> ( Base `  A ) )
111 eleq1 2689 . . . . . . 7  |-  ( y  =  A  ->  (
y  e. CMnd  <->  A  e. CMnd ) )
112 fveq2 6191 . . . . . . . . 9  |-  ( y  =  A  ->  ( Base `  y )  =  ( Base `  A
) )
113112feq3d 6032 . . . . . . . 8  |-  ( y  =  A  ->  (
z : t --> (
Base `  y )  <->  z : t --> ( Base `  A ) ) )
114113rexbidv 3052 . . . . . . 7  |-  ( y  =  A  ->  ( E. t  e.  Fin  z : t --> ( Base `  y )  <->  E. t  e.  Fin  z : t --> ( Base `  A
) ) )
115111, 114anbi12d 747 . . . . . 6  |-  ( y  =  A  ->  (
( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y ) )  <->  ( A  e. CMnd  /\  E. t  e. 
Fin  z : t --> ( Base `  A
) ) ) )
116 feq1 6026 . . . . . . . 8  |-  ( z  =  B  ->  (
z : t --> (
Base `  A )  <->  B : t --> ( Base `  A ) ) )
117116rexbidv 3052 . . . . . . 7  |-  ( z  =  B  ->  ( E. t  e.  Fin  z : t --> ( Base `  A )  <->  E. t  e.  Fin  B : t --> ( Base `  A
) ) )
118117anbi2d 740 . . . . . 6  |-  ( z  =  B  ->  (
( A  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  A ) )  <->  ( A  e. CMnd  /\  E. t  e. 
Fin  B : t --> ( Base `  A
) ) ) )
119115, 118opelopabg 4993 . . . . 5  |-  ( ( A  e. CMnd  /\  B  e.  _V )  ->  ( <. A ,  B >.  e. 
{ <. y ,  z
>.  |  ( y  e. CMnd  /\  E. t  e. 
Fin  z : t --> ( Base `  y
) ) }  <->  ( A  e. CMnd  /\  E. t  e. 
Fin  B : t --> ( Base `  A
) ) ) )
1206, 11, 119syl2anc 693 . . . 4  |-  ( ph  ->  ( <. A ,  B >.  e.  { <. y ,  z >.  |  ( y  e. CMnd  /\  E. t  e.  Fin  z : t --> ( Base `  y
) ) }  <->  ( A  e. CMnd  /\  E. t  e. 
Fin  B : t --> ( Base `  A
) ) ) )
1216, 110, 120mpbir2and 957 . . 3  |-  ( ph  -> 
<. A ,  B >.  e. 
{ <. y ,  z
>.  |  ( y  e. CMnd  /\  E. t  e. 
Fin  z : t --> ( Base `  y
) ) } )
122 iotaex 5868 . . . 4  |-  ( iota s E. m  e. 
NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1
( ( +g  `  A
) ,  ( n  e.  NN  |->  ( B `
 ( f `  n ) ) ) ) `  ( # `  I ) ) ) )  e.  _V
123122a1i 11 . . 3  |-  ( ph  ->  ( iota s E. m  e.  NN0  E. f
( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) )  e.  _V )
1243, 100, 121, 123fvmptd 6288 . 2  |-  ( ph  ->  ( FinSum  `  <. A ,  B >. )  =  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `
 n ) ) ) ) `  ( # `
 I ) ) ) ) )
1251, 124syl5eq 2668 1  |-  ( ph  ->  ( A FinSum  B )  =  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m
)
-1-1-onto-> I  /\  s  =  (  seq 1 ( ( +g  `  A ) ,  ( n  e.  NN  |->  ( B `  ( f `  n
) ) ) ) `
 ( # `  I
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   <.cop 4183   {copab 4712    |-> cmpt 4729   dom cdm 5114   iotacio 5849   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   1c1 9937   NNcn 11020   NN0cn0 11292   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941  CMndccmn 18193   FinSum cfinsum 33145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-bj-finsum 33146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator