![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-chpmat | Structured version Visualization version Unicode version |
Description: Define the characteristic polynomial of a square matrix. According to Wikipedia ("Characteristic polynomial", 31-Jul-2019, https://en.wikipedia.org/wiki/Characteristic_polynomial): "The characteristic polynomial of [an n x n matrix] A, denoted by pA(t), is the polynomial defined by pA ( t ) = det ( t I - A ) where I denotes the n-by-n identity matrix.". In addition, however, the underlying ring must be commutative, see definition in [Lang], p. 561: " Let k be a commutative ring ... Let M be any n x n matrix in k ... We define the characteristic polynomial PM(t) to be the determinant det ( t In - M ) where In is the unit n x n matrix." To be more precise, the matrices A and I on the right hand side are matrices with coefficients of a polynomial ring. Therefore, the original matrix A over a given commutative ring must be transformed into corresponding matrices over the polynomial ring over the given ring. (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
df-chpmat |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchpmat 20631 |
. 2
![]() | |
2 | vn |
. . 3
![]() ![]() | |
3 | vr |
. . 3
![]() ![]() | |
4 | cfn 7955 |
. . 3
![]() ![]() | |
5 | cvv 3200 |
. . 3
![]() ![]() | |
6 | vm |
. . . 4
![]() ![]() | |
7 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | 3 | cv 1482 |
. . . . . 6
![]() ![]() |
9 | cmat 20213 |
. . . . . 6
![]() | |
10 | 7, 8, 9 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
11 | cbs 15857 |
. . . . 5
![]() ![]() | |
12 | 10, 11 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | cv1 19546 |
. . . . . . . 8
![]() | |
14 | 8, 13 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
15 | cpl1 19547 |
. . . . . . . . . 10
![]() | |
16 | 8, 15 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() |
17 | 7, 16, 9 | co 6650 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | cur 18501 |
. . . . . . . 8
![]() ![]() | |
19 | 17, 18 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | cvsca 15945 |
. . . . . . . 8
![]() ![]() | |
21 | 17, 20 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 14, 19, 21 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 6 | cv 1482 |
. . . . . . 7
![]() ![]() |
24 | cmat2pmat 20509 |
. . . . . . . 8
![]() | |
25 | 7, 8, 24 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
26 | 23, 25 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | csg 17424 |
. . . . . . 7
![]() ![]() | |
28 | 17, 27 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 22, 26, 28 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | cmdat 20390 |
. . . . . 6
![]() | |
31 | 7, 16, 30 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 29, 31 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 6, 12, 32 | cmpt 4729 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 2, 3, 4, 5, 33 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 1, 34 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: chpmatfval 20635 |
Copyright terms: Public domain | W3C validator |