MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmatfval Structured version   Visualization version   Unicode version

Theorem chpmatfval 20635
Description: Value of the characteristic polynomial function. (Contributed by AV, 2-Aug-2019.)
Hypotheses
Ref Expression
chpmatfval.c  |-  C  =  ( N CharPlyMat  R )
chpmatfval.a  |-  A  =  ( N Mat  R )
chpmatfval.b  |-  B  =  ( Base `  A
)
chpmatfval.p  |-  P  =  (Poly1 `  R )
chpmatfval.y  |-  Y  =  ( N Mat  P )
chpmatfval.d  |-  D  =  ( N maDet  P )
chpmatfval.s  |-  .-  =  ( -g `  Y )
chpmatfval.x  |-  X  =  (var1 `  R )
chpmatfval.m  |-  .x.  =  ( .s `  Y )
chpmatfval.t  |-  T  =  ( N matToPolyMat  R )
chpmatfval.i  |-  .1.  =  ( 1r `  Y )
Assertion
Ref Expression
chpmatfval  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  C  =  ( m  e.  B  |->  ( D `
 ( ( X 
.x.  .1.  )  .-  ( T `  m ) ) ) ) )
Distinct variable groups:    B, m    D, m    .1. , m    m, N    R, m    m, X    T, m    .x. , m    .- , m
Allowed substitution hints:    A( m)    C( m)    P( m)    V( m)    Y( m)

Proof of Theorem chpmatfval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpmatfval.c . 2  |-  C  =  ( N CharPlyMat  R )
2 df-chpmat 20632 . . . 4  |- CharPlyMat  =  ( n  e.  Fin , 
r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) )  |->  ( ( n maDet 
(Poly1 `
 r ) ) `
 ( ( (var1 `  r ) ( .s
`  ( n Mat  (Poly1 `  r ) ) ) ( 1r `  (
n Mat  (Poly1 `  r ) ) ) ) ( -g `  ( n Mat  (Poly1 `  r
) ) ) ( ( n matToPolyMat  r ) `  m ) ) ) ) )
32a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  -> CharPlyMat  =  ( n  e. 
Fin ,  r  e.  _V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) 
|->  ( ( n maDet  (Poly1 `  r ) ) `  ( ( (var1 `  r
) ( .s `  ( n Mat  (Poly1 `  r
) ) ) ( 1r `  ( n Mat  (Poly1 `  r ) ) ) ) ( -g `  ( n Mat  (Poly1 `  r
) ) ) ( ( n matToPolyMat  r ) `  m ) ) ) ) ) )
4 oveq12 6659 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
5 chpmatfval.a . . . . . . . 8  |-  A  =  ( N Mat  R )
64, 5syl6eqr 2674 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  A )
76fveq2d 6195 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  A
) )
8 chpmatfval.b . . . . . 6  |-  B  =  ( Base `  A
)
97, 8syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
10 simpl 473 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
11 simpr 477 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  r  =  R )
1211fveq2d 6195 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
13 chpmatfval.p . . . . . . . . 9  |-  P  =  (Poly1 `  R )
1412, 13syl6eqr 2674 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  (Poly1 `  r )  =  P )
1510, 14oveq12d 6668 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n maDet  (Poly1 `  r
) )  =  ( N maDet  P ) )
16 chpmatfval.d . . . . . . 7  |-  D  =  ( N maDet  P )
1715, 16syl6eqr 2674 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n maDet  (Poly1 `  r
) )  =  D )
18 fveq2 6191 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
1918adantl 482 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  r  =  R )  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
2019, 13syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  r  =  R )  ->  (Poly1 `  r )  =  P )
2110, 20oveq12d 6668 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  (Poly1 `  r
) )  =  ( N Mat  P ) )
22 chpmatfval.y . . . . . . . . . 10  |-  Y  =  ( N Mat  P )
2321, 22syl6eqr 2674 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  (Poly1 `  r
) )  =  Y )
2423fveq2d 6195 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( -g `  (
n Mat  (Poly1 `  r ) ) )  =  ( -g `  Y ) )
25 chpmatfval.s . . . . . . . 8  |-  .-  =  ( -g `  Y )
2624, 25syl6eqr 2674 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( -g `  (
n Mat  (Poly1 `  r ) ) )  =  .-  )
2723fveq2d 6195 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( .s `  (
n Mat  (Poly1 `  r ) ) )  =  ( .s
`  Y ) )
28 chpmatfval.m . . . . . . . . 9  |-  .x.  =  ( .s `  Y )
2927, 28syl6eqr 2674 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( .s `  (
n Mat  (Poly1 `  r ) ) )  =  .x.  )
30 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  (var1 `  r )  =  (var1 `  R ) )
31 chpmatfval.x . . . . . . . . . 10  |-  X  =  (var1 `  R )
3230, 31syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  (var1 `  r )  =  X )
3332adantl 482 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  (var1 `  r )  =  X )
3423fveq2d 6195 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( 1r `  (
n Mat  (Poly1 `  r ) ) )  =  ( 1r
`  Y ) )
35 chpmatfval.i . . . . . . . . 9  |-  .1.  =  ( 1r `  Y )
3634, 35syl6eqr 2674 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( 1r `  (
n Mat  (Poly1 `  r ) ) )  =  .1.  )
3729, 33, 36oveq123d 6671 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( (var1 `  r ) ( .s `  ( n Mat  (Poly1 `  r ) ) ) ( 1r `  ( n Mat  (Poly1 `  r
) ) ) )  =  ( X  .x.  .1.  ) )
38 oveq12 6659 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n matToPolyMat  r )  =  ( N matToPolyMat  R ) )
39 chpmatfval.t . . . . . . . . 9  |-  T  =  ( N matToPolyMat  R )
4038, 39syl6eqr 2674 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n matToPolyMat  r )  =  T )
4140fveq1d 6193 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( n matToPolyMat  r ) `
 m )  =  ( T `  m
) )
4226, 37, 41oveq123d 6671 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( (var1 `  r
) ( .s `  ( n Mat  (Poly1 `  r
) ) ) ( 1r `  ( n Mat  (Poly1 `  r ) ) ) ) ( -g `  ( n Mat  (Poly1 `  r
) ) ) ( ( n matToPolyMat  r ) `  m ) )  =  ( ( X  .x.  .1.  )  .-  ( T `
 m ) ) )
4317, 42fveq12d 6197 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( n maDet  (Poly1 `  r ) ) `  ( ( (var1 `  r
) ( .s `  ( n Mat  (Poly1 `  r
) ) ) ( 1r `  ( n Mat  (Poly1 `  r ) ) ) ) ( -g `  ( n Mat  (Poly1 `  r
) ) ) ( ( n matToPolyMat  r ) `  m ) ) )  =  ( D `  ( ( X  .x.  .1.  )  .-  ( T `
 m ) ) ) )
449, 43mpteq12dv 4733 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  e.  (
Base `  ( n Mat  r ) )  |->  ( ( n maDet  (Poly1 `  r
) ) `  (
( (var1 `  r ) ( .s `  ( n Mat  (Poly1 `  r ) ) ) ( 1r `  ( n Mat  (Poly1 `  r
) ) ) ) ( -g `  (
n Mat  (Poly1 `  r ) ) ) ( ( n matToPolyMat  r ) `  m
) ) ) )  =  ( m  e.  B  |->  ( D `  ( ( X  .x.  .1.  )  .-  ( T `
 m ) ) ) ) )
4544adantl 482 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  -> 
( m  e.  (
Base `  ( n Mat  r ) )  |->  ( ( n maDet  (Poly1 `  r
) ) `  (
( (var1 `  r ) ( .s `  ( n Mat  (Poly1 `  r ) ) ) ( 1r `  ( n Mat  (Poly1 `  r
) ) ) ) ( -g `  (
n Mat  (Poly1 `  r ) ) ) ( ( n matToPolyMat  r ) `  m
) ) ) )  =  ( m  e.  B  |->  ( D `  ( ( X  .x.  .1.  )  .-  ( T `
 m ) ) ) ) )
46 simpl 473 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  N  e.  Fin )
47 elex 3212 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
4847adantl 482 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  R  e.  _V )
49 fvex 6201 . . . . 5  |-  ( Base `  A )  e.  _V
508, 49eqeltri 2697 . . . 4  |-  B  e. 
_V
51 mptexg 6484 . . . 4  |-  ( B  e.  _V  ->  (
m  e.  B  |->  ( D `  ( ( X  .x.  .1.  )  .-  ( T `  m
) ) ) )  e.  _V )
5250, 51mp1i 13 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( m  e.  B  |->  ( D `  (
( X  .x.  .1.  )  .-  ( T `  m ) ) ) )  e.  _V )
533, 45, 46, 48, 52ovmpt2d 6788 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( N CharPlyMat  R )  =  ( m  e.  B  |->  ( D `  ( ( X  .x.  .1.  )  .-  ( T `
 m ) ) ) ) )
541, 53syl5eq 2668 1  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  C  =  ( m  e.  B  |->  ( D `
 ( ( X 
.x.  .1.  )  .-  ( T `  m ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   .scvsca 15945   -gcsg 17424   1rcur 18501  var1cv1 19546  Poly1cpl1 19547   Mat cmat 20213   maDet cmdat 20390   matToPolyMat cmat2pmat 20509   CharPlyMat cchpmat 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-chpmat 20632
This theorem is referenced by:  chpmatval  20636
  Copyright terms: Public domain W3C validator