![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ewlks | Structured version Visualization version Unicode version |
Description: Define the set of all
s-walks of edges (in a hypergraph) corresponding
to s-walks "on the edge level" discussed in Aksoy et al. For
an
extended nonnegative integer s, an s-walk is a sequence of hyperedges,
e(0), e(1), ... , e(k), where e(j-1) and e(j) have at least s vertices
in common (for j=1, ... , k). In contrast to the definition in Aksoy et
al., ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-ewlks |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cewlks 26491 |
. 2
![]() | |
2 | vg |
. . 3
![]() ![]() | |
3 | vs |
. . 3
![]() ![]() | |
4 | cvv 3200 |
. . 3
![]() ![]() | |
5 | cxnn0 11363 |
. . 3
![]() | |
6 | vf |
. . . . . . . 8
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . . 7
![]() ![]() |
8 | vi |
. . . . . . . . . 10
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
10 | 9 | cdm 5114 |
. . . . . . . 8
![]() ![]() ![]() |
11 | 10 | cword 13291 |
. . . . . . 7
![]() ![]() ![]() |
12 | 7, 11 | wcel 1990 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
13 | 3 | cv 1482 |
. . . . . . . 8
![]() ![]() |
14 | vk |
. . . . . . . . . . . . . 14
![]() ![]() | |
15 | 14 | cv 1482 |
. . . . . . . . . . . . 13
![]() ![]() |
16 | c1 9937 |
. . . . . . . . . . . . 13
![]() ![]() | |
17 | cmin 10266 |
. . . . . . . . . . . . 13
![]() ![]() | |
18 | 15, 16, 17 | co 6650 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18, 7 | cfv 5888 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 19, 9 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 15, 7 | cfv 5888 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
22 | 21, 9 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 20, 22 | cin 3573 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | chash 13117 |
. . . . . . . . 9
![]() ![]() | |
25 | 23, 24 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | cle 10075 |
. . . . . . . 8
![]() ![]() | |
27 | 13, 25, 26 | wbr 4653 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 7, 24 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
29 | cfzo 12465 |
. . . . . . . 8
![]() | |
30 | 16, 28, 29 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 27, 14, 30 | wral 2912 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 12, 31 | wa 384 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
34 | ciedg 25875 |
. . . . . 6
![]() | |
35 | 33, 34 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
36 | 32, 8, 35 | wsbc 3435 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 36, 6 | cab 2608 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 2, 3, 4, 5, 37 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 1, 38 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: ewlksfval 26497 ewlkprop 26499 |
Copyright terms: Public domain | W3C validator |