| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-wlks | Structured version Visualization version Unicode version | ||
| Description: Define the set of all
walks (in a hypergraph). Such walks correspond to
the s-walks "on the vertex level" (with s = 1), and also to
1-walks "on
the edge level" (see wlk1walk 26535) discussed in Aksoy et al. The
predicate
The condition According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-wlks |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cwlks 26492 |
. 2
| |
| 2 | vg |
. . 3
| |
| 3 | cvv 3200 |
. . 3
| |
| 4 | vf |
. . . . . . 7
| |
| 5 | 4 | cv 1482 |
. . . . . 6
|
| 6 | 2 | cv 1482 |
. . . . . . . . 9
|
| 7 | ciedg 25875 |
. . . . . . . . 9
| |
| 8 | 6, 7 | cfv 5888 |
. . . . . . . 8
|
| 9 | 8 | cdm 5114 |
. . . . . . 7
|
| 10 | 9 | cword 13291 |
. . . . . 6
|
| 11 | 5, 10 | wcel 1990 |
. . . . 5
|
| 12 | cc0 9936 |
. . . . . . 7
| |
| 13 | chash 13117 |
. . . . . . . 8
| |
| 14 | 5, 13 | cfv 5888 |
. . . . . . 7
|
| 15 | cfz 12326 |
. . . . . . 7
| |
| 16 | 12, 14, 15 | co 6650 |
. . . . . 6
|
| 17 | cvtx 25874 |
. . . . . . 7
| |
| 18 | 6, 17 | cfv 5888 |
. . . . . 6
|
| 19 | vp |
. . . . . . 7
| |
| 20 | 19 | cv 1482 |
. . . . . 6
|
| 21 | 16, 18, 20 | wf 5884 |
. . . . 5
|
| 22 | vk |
. . . . . . . . . 10
| |
| 23 | 22 | cv 1482 |
. . . . . . . . 9
|
| 24 | 23, 20 | cfv 5888 |
. . . . . . . 8
|
| 25 | c1 9937 |
. . . . . . . . . 10
| |
| 26 | caddc 9939 |
. . . . . . . . . 10
| |
| 27 | 23, 25, 26 | co 6650 |
. . . . . . . . 9
|
| 28 | 27, 20 | cfv 5888 |
. . . . . . . 8
|
| 29 | 24, 28 | wceq 1483 |
. . . . . . 7
|
| 30 | 23, 5 | cfv 5888 |
. . . . . . . . 9
|
| 31 | 30, 8 | cfv 5888 |
. . . . . . . 8
|
| 32 | 24 | csn 4177 |
. . . . . . . 8
|
| 33 | 31, 32 | wceq 1483 |
. . . . . . 7
|
| 34 | 24, 28 | cpr 4179 |
. . . . . . . 8
|
| 35 | 34, 31 | wss 3574 |
. . . . . . 7
|
| 36 | 29, 33, 35 | wif 1012 |
. . . . . 6
|
| 37 | cfzo 12465 |
. . . . . . 7
| |
| 38 | 12, 14, 37 | co 6650 |
. . . . . 6
|
| 39 | 36, 22, 38 | wral 2912 |
. . . . 5
|
| 40 | 11, 21, 39 | w3a 1037 |
. . . 4
|
| 41 | 40, 4, 19 | copab 4712 |
. . 3
|
| 42 | 2, 3, 41 | cmpt 4729 |
. 2
|
| 43 | 1, 42 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: wksfval 26505 relwlk 26521 |
| Copyright terms: Public domain | W3C validator |