MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wlks Structured version   Visualization version   Unicode version

Definition df-wlks 26495
Description: Define the set of all walks (in a hypergraph). Such walks correspond to the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on the edge level" (see wlk1walk 26535) discussed in Aksoy et al. The predicate  F (Walks `  G ) P can be read as "The pair  <. F ,  P >. represents a walk in a graph  G", see also iswlk 26506.

The condition  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  (
f `  k )
) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e.  ( p `  k )  =  ( p `  ( k  +  1 ) ) should be allowed only if there is a loop at  ( p `  k
). Otherwise, C would be fulfilled by each edge containing  ( p `  k
).

According to the definition of [Bollobas] p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020.)

Assertion
Ref Expression
df-wlks  |- Walks  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
Distinct variable group:    f, g, k, p

Detailed syntax breakdown of Definition df-wlks
StepHypRef Expression
1 cwlks 26492 . 2  class Walks
2 vg . . 3  setvar  g
3 cvv 3200 . . 3  class  _V
4 vf . . . . . . 7  setvar  f
54cv 1482 . . . . . 6  class  f
62cv 1482 . . . . . . . . 9  class  g
7 ciedg 25875 . . . . . . . . 9  class iEdg
86, 7cfv 5888 . . . . . . . 8  class  (iEdg `  g )
98cdm 5114 . . . . . . 7  class  dom  (iEdg `  g )
109cword 13291 . . . . . 6  class Word  dom  (iEdg `  g )
115, 10wcel 1990 . . . . 5  wff  f  e. Word  dom  (iEdg `  g )
12 cc0 9936 . . . . . . 7  class  0
13 chash 13117 . . . . . . . 8  class  #
145, 13cfv 5888 . . . . . . 7  class  ( # `  f )
15 cfz 12326 . . . . . . 7  class  ...
1612, 14, 15co 6650 . . . . . 6  class  ( 0 ... ( # `  f
) )
17 cvtx 25874 . . . . . . 7  class Vtx
186, 17cfv 5888 . . . . . 6  class  (Vtx `  g )
19 vp . . . . . . 7  setvar  p
2019cv 1482 . . . . . 6  class  p
2116, 18, 20wf 5884 . . . . 5  wff  p : ( 0 ... ( # `
 f ) ) --> (Vtx `  g )
22 vk . . . . . . . . . 10  setvar  k
2322cv 1482 . . . . . . . . 9  class  k
2423, 20cfv 5888 . . . . . . . 8  class  ( p `
 k )
25 c1 9937 . . . . . . . . . 10  class  1
26 caddc 9939 . . . . . . . . . 10  class  +
2723, 25, 26co 6650 . . . . . . . . 9  class  ( k  +  1 )
2827, 20cfv 5888 . . . . . . . 8  class  ( p `
 ( k  +  1 ) )
2924, 28wceq 1483 . . . . . . 7  wff  ( p `
 k )  =  ( p `  (
k  +  1 ) )
3023, 5cfv 5888 . . . . . . . . 9  class  ( f `
 k )
3130, 8cfv 5888 . . . . . . . 8  class  ( (iEdg `  g ) `  (
f `  k )
)
3224csn 4177 . . . . . . . 8  class  { ( p `  k ) }
3331, 32wceq 1483 . . . . . . 7  wff  ( (iEdg `  g ) `  (
f `  k )
)  =  { ( p `  k ) }
3424, 28cpr 4179 . . . . . . . 8  class  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }
3534, 31wss 3574 . . . . . . 7  wff  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  ( f `  k
) )
3629, 33, 35wif 1012 . . . . . 6  wff if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) )
37 cfzo 12465 . . . . . . 7  class ..^
3812, 14, 37co 6650 . . . . . 6  class  ( 0..^ ( # `  f
) )
3936, 22, 38wral 2912 . . . . 5  wff  A. k  e.  ( 0..^ ( # `  f ) )if- ( ( p `  k
)  =  ( p `
 ( k  +  1 ) ) ,  ( (iEdg `  g
) `  ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  (
f `  k )
) )
4011, 21, 39w3a 1037 . . . 4  wff  ( f  e. Word  dom  (iEdg `  g
)  /\  p :
( 0 ... ( # `
 f ) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) )
4140, 4, 19copab 4712 . . 3  class  { <. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) }
422, 3, 41cmpt 4729 . 2  class  ( g  e.  _V  |->  { <. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
431, 42wceq 1483 1  wff Walks  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
Colors of variables: wff setvar class
This definition is referenced by:  wksfval  26505  relwlk  26521
  Copyright terms: Public domain W3C validator