MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlksfval Structured version   Visualization version   Unicode version

Theorem ewlksfval 26497
Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.)
Hypothesis
Ref Expression
ewlksfval.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
ewlksfval  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( G EdgWalks  S )  =  {
f  |  ( f  e. Word  dom  I  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( I `  ( f `
 ( k  - 
1 ) ) )  i^i  ( I `  ( f `  k
) ) ) ) ) } )
Distinct variable groups:    f, G, k    S, f, k    f, W, k
Allowed substitution hints:    I( f, k)

Proof of Theorem ewlksfval
Dummy variables  g 
i  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ewlks 26494 . . . 4  |- EdgWalks  =  ( g  e.  _V , 
s  e. NN0*  |->  { f  |  [. (iEdg `  g )  /  i ]. ( f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f ) ) s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) ) ) } )
21a1i 11 . . 3  |-  ( ( G  e.  W  /\  S  e. NN0* )  -> EdgWalks  =  ( g  e.  _V ,  s  e. NN0*  |->  { f  |  [. (iEdg `  g )  /  i ]. ( f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f ) ) s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) ) ) } ) )
3 fvexd 6203 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  (iEdg `  g )  e.  _V )
4 simpr 477 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  i  =  (iEdg `  g ) )
5 fveq2 6191 . . . . . . . . . . . . 13  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
65adantr 481 . . . . . . . . . . . 12  |-  ( ( g  =  G  /\  s  =  S )  ->  (iEdg `  g )  =  (iEdg `  G )
)
76adantr 481 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  (iEdg `  g
)  =  (iEdg `  G ) )
84, 7eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  i  =  (iEdg `  G ) )
98dmeqd 5326 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  dom  i  =  dom  (iEdg `  G
) )
10 wrdeq 13327 . . . . . . . . 9  |-  ( dom  i  =  dom  (iEdg `  G )  -> Word  dom  i  = Word  dom  (iEdg `  G
) )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  -> Word  dom  i  = Word 
dom  (iEdg `  G )
)
1211eleq2d 2687 . . . . . . 7  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( f  e. Word  dom  i  <->  f  e. Word  dom  (iEdg `  G )
) )
13 simpr 477 . . . . . . . . . 10  |-  ( ( g  =  G  /\  s  =  S )  ->  s  =  S )
1413adantr 481 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  s  =  S )
158fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( i `  ( f `  (
k  -  1 ) ) )  =  ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) ) )
168fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( i `  ( f `  k
) )  =  ( (iEdg `  G ) `  ( f `  k
) ) )
1715, 16ineq12d 3815 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( (
i `  ( f `  ( k  -  1 ) ) )  i^i  ( i `  (
f `  k )
) )  =  ( ( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) )
1817fveq2d 6195 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) )  =  ( # `  ( ( (iEdg `  G ) `  (
f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G ) `  (
f `  k )
) ) ) )
1914, 18breq12d 4666 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) )  <->  S  <_  ( # `  ( ( (iEdg `  G ) `  (
f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G ) `  (
f `  k )
) ) ) ) )
2019ralbidv 2986 . . . . . . 7  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( A. k  e.  ( 1..^ ( # `  f
) ) s  <_ 
( # `  ( ( i `  ( f `
 ( k  - 
1 ) ) )  i^i  ( i `  ( f `  k
) ) ) )  <->  A. k  e.  (
1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) ) ) )
2112, 20anbi12d 747 . . . . . 6  |-  ( ( ( g  =  G  /\  s  =  S )  /\  i  =  (iEdg `  g )
)  ->  ( (
f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f
) ) s  <_ 
( # `  ( ( i `  ( f `
 ( k  - 
1 ) ) )  i^i  ( i `  ( f `  k
) ) ) ) )  <->  ( f  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) ) ) ) )
223, 21sbcied 3472 . . . . 5  |-  ( ( g  =  G  /\  s  =  S )  ->  ( [. (iEdg `  g )  /  i ]. ( f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f ) ) s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) ) )  <->  ( f  e. Word  dom  (iEdg `  G
)  /\  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) ) ) )
2322abbidv 2741 . . . 4  |-  ( ( g  =  G  /\  s  =  S )  ->  { f  |  [. (iEdg `  g )  / 
i ]. ( f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f ) ) s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) ) ) }  =  { f  |  ( f  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) ) ) } )
2423adantl 482 . . 3  |-  ( ( ( G  e.  W  /\  S  e. NN0* )  /\  ( g  =  G  /\  s  =  S ) )  ->  { f  |  [. (iEdg `  g )  /  i ]. ( f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f ) ) s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) ) ) }  =  { f  |  ( f  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) ) ) } )
25 elex 3212 . . . 4  |-  ( G  e.  W  ->  G  e.  _V )
2625adantr 481 . . 3  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  G  e.  _V )
27 simpr 477 . . 3  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  S  e. NN0* )
28 df-rab 2921 . . . 4  |-  { f  e. Word  dom  (iEdg `  G
)  |  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) }  =  {
f  |  ( f  e. Word  dom  (iEdg `  G
)  /\  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) ) }
29 fvex 6201 . . . . . . . 8  |-  (iEdg `  G )  e.  _V
3029dmex 7099 . . . . . . 7  |-  dom  (iEdg `  G )  e.  _V
3130wrdexi 13317 . . . . . 6  |- Word  dom  (iEdg `  G )  e.  _V
3231rabex 4813 . . . . 5  |-  { f  e. Word  dom  (iEdg `  G
)  |  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) }  e.  _V
3332a1i 11 . . . 4  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  { f  e. Word  dom  (iEdg `  G )  |  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) ) }  e.  _V )
3428, 33syl5eqelr 2706 . . 3  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  { f  |  ( f  e. Word  dom  (iEdg `  G
)  /\  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) ) }  e.  _V )
352, 24, 26, 27, 34ovmpt2d 6788 . 2  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( G EdgWalks  S )  =  {
f  |  ( f  e. Word  dom  (iEdg `  G
)  /\  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) ) } )
36 ewlksfval.i . . . . . . . . 9  |-  I  =  (iEdg `  G )
3736eqcomi 2631 . . . . . . . 8  |-  (iEdg `  G )  =  I
3837a1i 11 . . . . . . 7  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  (iEdg `  G )  =  I )
3938dmeqd 5326 . . . . . 6  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  dom  (iEdg `  G )  =  dom  I )
40 wrdeq 13327 . . . . . 6  |-  ( dom  (iEdg `  G )  =  dom  I  -> Word  dom  (iEdg `  G )  = Word  dom  I )
4139, 40syl 17 . . . . 5  |-  ( ( G  e.  W  /\  S  e. NN0* )  -> Word  dom  (iEdg `  G )  = Word 
dom  I )
4241eleq2d 2687 . . . 4  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( f  e. Word  dom  (iEdg `  G )  <->  f  e. Word  dom  I ) )
4338fveq1d 6193 . . . . . . . 8  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  =  ( I `  ( f `
 ( k  - 
1 ) ) ) )
4438fveq1d 6193 . . . . . . . 8  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( (iEdg `  G ) `  ( f `  k
) )  =  ( I `  ( f `
 k ) ) )
4543, 44ineq12d 3815 . . . . . . 7  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( ( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) )  =  ( ( I `
 ( f `  ( k  -  1 ) ) )  i^i  ( I `  (
f `  k )
) ) )
4645fveq2d 6195 . . . . . 6  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  (
# `  ( (
(iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) )  =  ( # `  (
( I `  (
f `  ( k  -  1 ) ) )  i^i  ( I `
 ( f `  k ) ) ) ) )
4746breq2d 4665 . . . . 5  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) )  <->  S  <_  ( # `  ( ( I `  ( f `  (
k  -  1 ) ) )  i^i  (
I `  ( f `  k ) ) ) ) ) )
4847ralbidv 2986 . . . 4  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) )  <->  A. k  e.  (
1..^ ( # `  f
) ) S  <_ 
( # `  ( ( I `  ( f `
 ( k  - 
1 ) ) )  i^i  ( I `  ( f `  k
) ) ) ) ) )
4942, 48anbi12d 747 . . 3  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( ( f  e. Word  dom  (iEdg `  G )  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( (iEdg `  G ) `  ( f `  (
k  -  1 ) ) )  i^i  (
(iEdg `  G ) `  ( f `  k
) ) ) ) )  <->  ( f  e. Word  dom  I  /\  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( I `  (
f `  ( k  -  1 ) ) )  i^i  ( I `
 ( f `  k ) ) ) ) ) ) )
5049abbidv 2741 . 2  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  { f  |  ( f  e. Word  dom  (iEdg `  G
)  /\  A. k  e.  ( 1..^ ( # `  f ) ) S  <_  ( # `  (
( (iEdg `  G
) `  ( f `  ( k  -  1 ) ) )  i^i  ( (iEdg `  G
) `  ( f `  k ) ) ) ) ) }  =  { f  |  ( f  e. Word  dom  I  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( I `  ( f `
 ( k  - 
1 ) ) )  i^i  ( I `  ( f `  k
) ) ) ) ) } )
5135, 50eqtrd 2656 1  |-  ( ( G  e.  W  /\  S  e. NN0* )  ->  ( G EdgWalks  S )  =  {
f  |  ( f  e. Word  dom  I  /\  A. k  e.  ( 1..^ ( # `  f
) ) S  <_ 
( # `  ( ( I `  ( f `
 ( k  - 
1 ) ) )  i^i  ( I `  ( f `  k
) ) ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200   [.wsbc 3435    i^i cin 3573   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1c1 9937    <_ cle 10075    - cmin 10266  NN0*cxnn0 11363  ..^cfzo 12465   #chash 13117  Word cword 13291  iEdgciedg 25875   EdgWalks cewlks 26491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-ewlks 26494
This theorem is referenced by:  isewlk  26498
  Copyright terms: Public domain W3C validator