Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-fwddifn Structured version   Visualization version   Unicode version

Definition df-fwddifn 32268
Description: Define the nth forward difference operator. This works out to be the forward difference operator iterated  n times. (Contributed by Scott Fenton, 28-May-2020.)
Assertion
Ref Expression
df-fwddifn  |-  _/_\^nn  =  ( n  e. 
NN0 ,  f  e.  ( CC  ^pm  CC ) 
|->  ( x  e.  {
y  e.  CC  |  A. k  e.  (
0 ... n ) ( y  +  k )  e.  dom  f } 
|->  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) ) ) )
Distinct variable group:    f, n, x, y, k

Detailed syntax breakdown of Definition df-fwddifn
StepHypRef Expression
1 cfwddifn 32267 . 2  class  _/_\^nn
2 vn . . 3  setvar  n
3 vf . . 3  setvar  f
4 cn0 11292 . . 3  class  NN0
5 cc 9934 . . . 4  class  CC
6 cpm 7858 . . . 4  class  ^pm
75, 5, 6co 6650 . . 3  class  ( CC 
^pm  CC )
8 vx . . . 4  setvar  x
9 vy . . . . . . . . 9  setvar  y
109cv 1482 . . . . . . . 8  class  y
11 vk . . . . . . . . 9  setvar  k
1211cv 1482 . . . . . . . 8  class  k
13 caddc 9939 . . . . . . . 8  class  +
1410, 12, 13co 6650 . . . . . . 7  class  ( y  +  k )
153cv 1482 . . . . . . . 8  class  f
1615cdm 5114 . . . . . . 7  class  dom  f
1714, 16wcel 1990 . . . . . 6  wff  ( y  +  k )  e. 
dom  f
18 cc0 9936 . . . . . . 7  class  0
192cv 1482 . . . . . . 7  class  n
20 cfz 12326 . . . . . . 7  class  ...
2118, 19, 20co 6650 . . . . . 6  class  ( 0 ... n )
2217, 11, 21wral 2912 . . . . 5  wff  A. k  e.  ( 0 ... n
) ( y  +  k )  e.  dom  f
2322, 9, 5crab 2916 . . . 4  class  { y  e.  CC  |  A. k  e.  ( 0 ... n ) ( y  +  k )  e.  dom  f }
24 cbc 13089 . . . . . . 7  class  _C
2519, 12, 24co 6650 . . . . . 6  class  ( n  _C  k )
26 c1 9937 . . . . . . . . 9  class  1
2726cneg 10267 . . . . . . . 8  class  -u 1
28 cmin 10266 . . . . . . . . 9  class  -
2919, 12, 28co 6650 . . . . . . . 8  class  ( n  -  k )
30 cexp 12860 . . . . . . . 8  class  ^
3127, 29, 30co 6650 . . . . . . 7  class  ( -u
1 ^ ( n  -  k ) )
328cv 1482 . . . . . . . . 9  class  x
3332, 12, 13co 6650 . . . . . . . 8  class  ( x  +  k )
3433, 15cfv 5888 . . . . . . 7  class  ( f `
 ( x  +  k ) )
35 cmul 9941 . . . . . . 7  class  x.
3631, 34, 35co 6650 . . . . . 6  class  ( (
-u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) )
3725, 36, 35co 6650 . . . . 5  class  ( ( n  _C  k )  x.  ( ( -u
1 ^ ( n  -  k ) )  x.  ( f `  ( x  +  k
) ) ) )
3821, 37, 11csu 14416 . . . 4  class  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( -u 1 ^ ( n  -  k ) )  x.  ( f `  (
x  +  k ) ) ) )
398, 23, 38cmpt 4729 . . 3  class  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... n
) ( y  +  k )  e.  dom  f }  |->  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( -u 1 ^ ( n  -  k ) )  x.  ( f `  (
x  +  k ) ) ) ) )
402, 3, 4, 7, 39cmpt2 6652 . 2  class  ( n  e.  NN0 ,  f  e.  ( CC  ^pm  CC )  |->  ( x  e. 
{ y  e.  CC  |  A. k  e.  ( 0 ... n ) ( y  +  k )  e.  dom  f }  |->  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) ) ) )
411, 40wceq 1483 1  wff  _/_\^nn  =  ( n  e. 
NN0 ,  f  e.  ( CC  ^pm  CC ) 
|->  ( x  e.  {
y  e.  CC  |  A. k  e.  (
0 ... n ) ( y  +  k )  e.  dom  f } 
|->  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  fwddifnval  32270
  Copyright terms: Public domain W3C validator