Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifval Structured version   Visualization version   Unicode version

Theorem fwddifval 32269
Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
Hypotheses
Ref Expression
fwddifval.1  |-  ( ph  ->  A  C_  CC )
fwddifval.2  |-  ( ph  ->  F : A --> CC )
fwddifval.3  |-  ( ph  ->  X  e.  A )
fwddifval.4  |-  ( ph  ->  ( X  +  1 )  e.  A )
Assertion
Ref Expression
fwddifval  |-  ( ph  ->  ( (  _/_\  `  F
) `  X )  =  ( ( F `
 ( X  + 
1 ) )  -  ( F `  X ) ) )

Proof of Theorem fwddifval
Dummy variables  x  y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddif 32266 . . . . 5  |-  _/_\  =  ( f  e.  ( CC 
^pm  CC )  |->  ( x  e.  { y  e. 
dom  f  |  ( y  +  1 )  e.  dom  f } 
|->  ( ( f `  ( x  +  1
) )  -  (
f `  x )
) ) )
21a1i 11 . . . 4  |-  ( ph  ->  _/_\  =  ( f  e.  ( CC  ^pm  CC )  |->  ( x  e. 
{ y  e.  dom  f  |  ( y  +  1 )  e. 
dom  f }  |->  ( ( f `  (
x  +  1 ) )  -  ( f `
 x ) ) ) ) )
3 dmeq 5324 . . . . . . 7  |-  ( f  =  F  ->  dom  f  =  dom  F )
43eleq2d 2687 . . . . . . 7  |-  ( f  =  F  ->  (
( y  +  1 )  e.  dom  f  <->  ( y  +  1 )  e.  dom  F ) )
53, 4rabeqbidv 3195 . . . . . 6  |-  ( f  =  F  ->  { y  e.  dom  f  |  ( y  +  1 )  e.  dom  f }  =  { y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }
)
6 fveq1 6190 . . . . . . 7  |-  ( f  =  F  ->  (
f `  ( x  +  1 ) )  =  ( F `  ( x  +  1
) ) )
7 fveq1 6190 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
86, 7oveq12d 6668 . . . . . 6  |-  ( f  =  F  ->  (
( f `  (
x  +  1 ) )  -  ( f `
 x ) )  =  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) )
95, 8mpteq12dv 4733 . . . . 5  |-  ( f  =  F  ->  (
x  e.  { y  e.  dom  f  |  ( y  +  1 )  e.  dom  f }  |->  ( ( f `
 ( x  + 
1 ) )  -  ( f `  x
) ) )  =  ( x  e.  {
y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) ) )
109adantl 482 . . . 4  |-  ( (
ph  /\  f  =  F )  ->  (
x  e.  { y  e.  dom  f  |  ( y  +  1 )  e.  dom  f }  |->  ( ( f `
 ( x  + 
1 ) )  -  ( f `  x
) ) )  =  ( x  e.  {
y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) ) )
11 fwddifval.2 . . . . 5  |-  ( ph  ->  F : A --> CC )
12 fwddifval.1 . . . . 5  |-  ( ph  ->  A  C_  CC )
13 cnex 10017 . . . . . 6  |-  CC  e.  _V
14 elpm2r 7875 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  CC  e.  _V )  /\  ( F : A --> CC  /\  A  C_  CC ) )  ->  F  e.  ( CC  ^pm  CC ) )
1513, 13, 14mpanl12 718 . . . . 5  |-  ( ( F : A --> CC  /\  A  C_  CC )  ->  F  e.  ( CC  ^pm 
CC ) )
1611, 12, 15syl2anc 693 . . . 4  |-  ( ph  ->  F  e.  ( CC 
^pm  CC ) )
17 fdm 6051 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
1811, 17syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
1913a1i 11 . . . . . . 7  |-  ( ph  ->  CC  e.  _V )
2019, 12ssexd 4805 . . . . . 6  |-  ( ph  ->  A  e.  _V )
2118, 20eqeltrd 2701 . . . . 5  |-  ( ph  ->  dom  F  e.  _V )
22 rabexg 4812 . . . . 5  |-  ( dom 
F  e.  _V  ->  { y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  e.  _V )
23 mptexg 6484 . . . . 5  |-  ( { y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  e.  _V  ->  ( x  e.  { y  e.  dom  F  | 
( y  +  1 )  e.  dom  F }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) )  e.  _V )
2421, 22, 233syl 18 . . . 4  |-  ( ph  ->  ( x  e.  {
y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) )  e.  _V )
252, 10, 16, 24fvmptd 6288 . . 3  |-  ( ph  ->  (  _/_\  `  F )  =  ( x  e. 
{ y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) ) )
2618eleq2d 2687 . . . . 5  |-  ( ph  ->  ( ( y  +  1 )  e.  dom  F  <-> 
( y  +  1 )  e.  A ) )
2718, 26rabeqbidv 3195 . . . 4  |-  ( ph  ->  { y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  =  { y  e.  A  |  ( y  +  1 )  e.  A } )
2827mpteq1d 4738 . . 3  |-  ( ph  ->  ( x  e.  {
y  e.  dom  F  |  ( y  +  1 )  e.  dom  F }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) )  =  ( x  e.  { y  e.  A  |  ( y  +  1 )  e.  A }  |->  ( ( F `  (
x  +  1 ) )  -  ( F `
 x ) ) ) )
2925, 28eqtrd 2656 . 2  |-  ( ph  ->  (  _/_\  `  F )  =  ( x  e. 
{ y  e.  A  |  ( y  +  1 )  e.  A }  |->  ( ( F `
 ( x  + 
1 ) )  -  ( F `  x ) ) ) )
30 oveq1 6657 . . . . 5  |-  ( x  =  X  ->  (
x  +  1 )  =  ( X  + 
1 ) )
3130fveq2d 6195 . . . 4  |-  ( x  =  X  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( X  +  1
) ) )
32 fveq2 6191 . . . 4  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
3331, 32oveq12d 6668 . . 3  |-  ( x  =  X  ->  (
( F `  (
x  +  1 ) )  -  ( F `
 x ) )  =  ( ( F `
 ( X  + 
1 ) )  -  ( F `  X ) ) )
3433adantl 482 . 2  |-  ( (
ph  /\  x  =  X )  ->  (
( F `  (
x  +  1 ) )  -  ( F `
 x ) )  =  ( ( F `
 ( X  + 
1 ) )  -  ( F `  X ) ) )
35 fwddifval.3 . . 3  |-  ( ph  ->  X  e.  A )
36 fwddifval.4 . . 3  |-  ( ph  ->  ( X  +  1 )  e.  A )
37 oveq1 6657 . . . . 5  |-  ( y  =  X  ->  (
y  +  1 )  =  ( X  + 
1 ) )
3837eleq1d 2686 . . . 4  |-  ( y  =  X  ->  (
( y  +  1 )  e.  A  <->  ( X  +  1 )  e.  A ) )
3938elrab 3363 . . 3  |-  ( X  e.  { y  e.  A  |  ( y  +  1 )  e.  A }  <->  ( X  e.  A  /\  ( X  +  1 )  e.  A ) )
4035, 36, 39sylanbrc 698 . 2  |-  ( ph  ->  X  e.  { y  e.  A  |  ( y  +  1 )  e.  A } )
41 ovexd 6680 . 2  |-  ( ph  ->  ( ( F `  ( X  +  1
) )  -  ( F `  X )
)  e.  _V )
4229, 34, 40, 41fvmptd 6288 1  |-  ( ph  ->  ( (  _/_\  `  F
) `  X )  =  ( ( F `
 ( X  + 
1 ) )  -  ( F `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   1c1 9937    + caddc 9939    - cmin 10266    _/_\ cfwddif 32265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-fwddif 32266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator