Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnval Structured version   Visualization version   Unicode version

Theorem fwddifnval 32270
Description: The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnval.1  |-  ( ph  ->  N  e.  NN0 )
fwddifnval.2  |-  ( ph  ->  A  C_  CC )
fwddifnval.3  |-  ( ph  ->  F : A --> CC )
fwddifnval.4  |-  ( ph  ->  X  e.  CC )
fwddifnval.5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( X  +  k )  e.  A )
Assertion
Ref Expression
fwddifnval  |-  ( ph  ->  ( ( N  _/_\^nn  F ) `  X
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u 1 ^ ( N  -  k ) )  x.  ( F `  ( X  +  k )
) ) ) )
Distinct variable groups:    k, N    A, k    k, X    k, F    ph, k

Proof of Theorem fwddifnval
Dummy variables  n  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddifn 32268 . . . 4  |-  _/_\^nn  =  ( n  e. 
NN0 ,  f  e.  ( CC  ^pm  CC ) 
|->  ( x  e.  {
y  e.  CC  |  A. k  e.  (
0 ... n ) ( y  +  k )  e.  dom  f } 
|->  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) ) ) )
21a1i 11 . . 3  |-  ( ph  ->  _/_\^nn  =  ( n  e.  NN0 ,  f  e.  ( CC 
^pm  CC )  |->  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... n
) ( y  +  k )  e.  dom  f }  |->  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( -u 1 ^ ( n  -  k ) )  x.  ( f `  (
x  +  k ) ) ) ) ) ) )
3 oveq2 6658 . . . . . . . 8  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
43adantr 481 . . . . . . 7  |-  ( ( n  =  N  /\  f  =  F )  ->  ( 0 ... n
)  =  ( 0 ... N ) )
5 dmeq 5324 . . . . . . . . 9  |-  ( f  =  F  ->  dom  f  =  dom  F )
65eleq2d 2687 . . . . . . . 8  |-  ( f  =  F  ->  (
( y  +  k )  e.  dom  f  <->  ( y  +  k )  e.  dom  F ) )
76adantl 482 . . . . . . 7  |-  ( ( n  =  N  /\  f  =  F )  ->  ( ( y  +  k )  e.  dom  f 
<->  ( y  +  k )  e.  dom  F
) )
84, 7raleqbidv 3152 . . . . . 6  |-  ( ( n  =  N  /\  f  =  F )  ->  ( A. k  e.  ( 0 ... n
) ( y  +  k )  e.  dom  f 
<-> 
A. k  e.  ( 0 ... N ) ( y  +  k )  e.  dom  F
) )
98rabbidv 3189 . . . . 5  |-  ( ( n  =  N  /\  f  =  F )  ->  { y  e.  CC  |  A. k  e.  ( 0 ... n ) ( y  +  k )  e.  dom  f }  =  { y  e.  CC  |  A. k  e.  ( 0 ... N
) ( y  +  k )  e.  dom  F } )
10 oveq1 6657 . . . . . . . . 9  |-  ( n  =  N  ->  (
n  _C  k )  =  ( N  _C  k ) )
1110adantr 481 . . . . . . . 8  |-  ( ( n  =  N  /\  f  =  F )  ->  ( n  _C  k
)  =  ( N  _C  k ) )
12 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  N  ->  (
n  -  k )  =  ( N  -  k ) )
1312oveq2d 6666 . . . . . . . . 9  |-  ( n  =  N  ->  ( -u 1 ^ ( n  -  k ) )  =  ( -u 1 ^ ( N  -  k ) ) )
14 fveq1 6190 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  ( x  +  k ) )  =  ( F `  ( x  +  k
) ) )
1513, 14oveqan12d 6669 . . . . . . . 8  |-  ( ( n  =  N  /\  f  =  F )  ->  ( ( -u 1 ^ ( n  -  k ) )  x.  ( f `  (
x  +  k ) ) )  =  ( ( -u 1 ^ ( N  -  k
) )  x.  ( F `  ( x  +  k ) ) ) )
1611, 15oveq12d 6668 . . . . . . 7  |-  ( ( n  =  N  /\  f  =  F )  ->  ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) )  =  ( ( N  _C  k )  x.  ( ( -u
1 ^ ( N  -  k ) )  x.  ( F `  ( x  +  k
) ) ) ) )
1716adantr 481 . . . . . 6  |-  ( ( ( n  =  N  /\  f  =  F )  /\  k  e.  ( 0 ... n
) )  ->  (
( n  _C  k
)  x.  ( (
-u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) )  =  ( ( N  _C  k )  x.  ( ( -u
1 ^ ( N  -  k ) )  x.  ( F `  ( x  +  k
) ) ) ) )
184, 17sumeq12dv 14437 . . . . 5  |-  ( ( n  =  N  /\  f  =  F )  -> 
sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) )  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u 1 ^ ( N  -  k ) )  x.  ( F `  (
x  +  k ) ) ) ) )
199, 18mpteq12dv 4733 . . . 4  |-  ( ( n  =  N  /\  f  =  F )  ->  ( x  e.  {
y  e.  CC  |  A. k  e.  (
0 ... n ) ( y  +  k )  e.  dom  f } 
|->  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) ) )  =  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... N ) ( y  +  k )  e.  dom  F }  |-> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) ) ) ) )
2019adantl 482 . . 3  |-  ( (
ph  /\  ( n  =  N  /\  f  =  F ) )  -> 
( x  e.  {
y  e.  CC  |  A. k  e.  (
0 ... n ) ( y  +  k )  e.  dom  f } 
|->  sum_ k  e.  ( 0 ... n ) ( ( n  _C  k )  x.  (
( -u 1 ^ (
n  -  k ) )  x.  ( f `
 ( x  +  k ) ) ) ) )  =  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... N ) ( y  +  k )  e.  dom  F }  |-> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) ) ) ) )
21 fwddifnval.1 . . 3  |-  ( ph  ->  N  e.  NN0 )
22 fwddifnval.3 . . . 4  |-  ( ph  ->  F : A --> CC )
23 fwddifnval.2 . . . 4  |-  ( ph  ->  A  C_  CC )
24 cnex 10017 . . . . 5  |-  CC  e.  _V
25 elpm2r 7875 . . . . 5  |-  ( ( ( CC  e.  _V  /\  CC  e.  _V )  /\  ( F : A --> CC  /\  A  C_  CC ) )  ->  F  e.  ( CC  ^pm  CC ) )
2624, 24, 25mpanl12 718 . . . 4  |-  ( ( F : A --> CC  /\  A  C_  CC )  ->  F  e.  ( CC  ^pm 
CC ) )
2722, 23, 26syl2anc 693 . . 3  |-  ( ph  ->  F  e.  ( CC 
^pm  CC ) )
2824mptrabex 6488 . . . 4  |-  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... N
) ( y  +  k )  e.  dom  F }  |->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) ) ) )  e.  _V
2928a1i 11 . . 3  |-  ( ph  ->  ( x  e.  {
y  e.  CC  |  A. k  e.  (
0 ... N ) ( y  +  k )  e.  dom  F }  |-> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) ) ) )  e.  _V )
302, 20, 21, 27, 29ovmpt2d 6788 . 2  |-  ( ph  ->  ( N  _/_\^nn  F )  =  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... N ) ( y  +  k )  e.  dom  F }  |-> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) ) ) ) )
31 oveq1 6657 . . . . . . 7  |-  ( x  =  X  ->  (
x  +  k )  =  ( X  +  k ) )
3231fveq2d 6195 . . . . . 6  |-  ( x  =  X  ->  ( F `  ( x  +  k ) )  =  ( F `  ( X  +  k
) ) )
3332oveq2d 6666 . . . . 5  |-  ( x  =  X  ->  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) )  =  ( ( -u
1 ^ ( N  -  k ) )  x.  ( F `  ( X  +  k
) ) ) )
3433oveq2d 6666 . . . 4  |-  ( x  =  X  ->  (
( N  _C  k
)  x.  ( (
-u 1 ^ ( N  -  k )
)  x.  ( F `
 ( x  +  k ) ) ) )  =  ( ( N  _C  k )  x.  ( ( -u
1 ^ ( N  -  k ) )  x.  ( F `  ( X  +  k
) ) ) ) )
3534sumeq2sdv 14435 . . 3  |-  ( x  =  X  ->  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u 1 ^ ( N  -  k ) )  x.  ( F `  (
x  +  k ) ) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( X  +  k ) ) ) ) )
3635adantl 482 . 2  |-  ( (
ph  /\  x  =  X )  ->  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u 1 ^ ( N  -  k ) )  x.  ( F `  (
x  +  k ) ) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( X  +  k ) ) ) ) )
37 fwddifnval.4 . . 3  |-  ( ph  ->  X  e.  CC )
38 fwddifnval.5 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( X  +  k )  e.  A )
39 fdm 6051 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
4022, 39syl 17 . . . . . 6  |-  ( ph  ->  dom  F  =  A )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  dom  F  =  A )
4238, 41eleqtrrd 2704 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( X  +  k )  e.  dom  F )
4342ralrimiva 2966 . . 3  |-  ( ph  ->  A. k  e.  ( 0 ... N ) ( X  +  k )  e.  dom  F
)
44 oveq1 6657 . . . . . 6  |-  ( y  =  X  ->  (
y  +  k )  =  ( X  +  k ) )
4544eleq1d 2686 . . . . 5  |-  ( y  =  X  ->  (
( y  +  k )  e.  dom  F  <->  ( X  +  k )  e.  dom  F ) )
4645ralbidv 2986 . . . 4  |-  ( y  =  X  ->  ( A. k  e.  (
0 ... N ) ( y  +  k )  e.  dom  F  <->  A. k  e.  ( 0 ... N
) ( X  +  k )  e.  dom  F ) )
4746elrab 3363 . . 3  |-  ( X  e.  { y  e.  CC  |  A. k  e.  ( 0 ... N
) ( y  +  k )  e.  dom  F }  <->  ( X  e.  CC  /\  A. k  e.  ( 0 ... N
) ( X  +  k )  e.  dom  F ) )
4837, 43, 47sylanbrc 698 . 2  |-  ( ph  ->  X  e.  { y  e.  CC  |  A. k  e.  ( 0 ... N ) ( y  +  k )  e.  dom  F }
)
49 sumex 14418 . . 3  |-  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u 1 ^ ( N  -  k ) )  x.  ( F `  ( X  +  k )
) ) )  e. 
_V
5049a1i 11 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u 1 ^ ( N  -  k )
)  x.  ( F `
 ( X  +  k ) ) ) )  e.  _V )
5130, 36, 48, 50fvmptd 6288 1  |-  ( ph  ->  ( ( N  _/_\^nn  F ) `  X
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u 1 ^ ( N  -  k ) )  x.  ( F `  ( X  +  k )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^pm cpm 7858   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   NN0cn0 11292   ...cfz 12326   ^cexp 12860    _C cbc 13089   sum_csu 14416    _/_\^nn cfwddifn 32267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-fwddifn 32268
This theorem is referenced by:  fwddifn0  32271  fwddifnp1  32272
  Copyright terms: Public domain W3C validator