| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnoval | Structured version Visualization version Unicode version | ||
| Description: The set of linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnoval.1 |
|
| lnoval.2 |
|
| lnoval.3 |
|
| lnoval.4 |
|
| lnoval.5 |
|
| lnoval.6 |
|
| lnoval.7 |
|
| Ref | Expression |
|---|---|
| lnoval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoval.7 |
. 2
| |
| 2 | fveq2 6191 |
. . . . . 6
| |
| 3 | lnoval.1 |
. . . . . 6
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . 5
|
| 5 | 4 | oveq2d 6666 |
. . . 4
|
| 6 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 7 | lnoval.3 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 9 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 10 | lnoval.5 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . . . . 11
|
| 12 | 11 | oveqd 6667 |
. . . . . . . . . 10
|
| 13 | eqidd 2623 |
. . . . . . . . . 10
| |
| 14 | 8, 12, 13 | oveq123d 6671 |
. . . . . . . . 9
|
| 15 | 14 | fveq2d 6195 |
. . . . . . . 8
|
| 16 | 15 | eqeq1d 2624 |
. . . . . . 7
|
| 17 | 4, 16 | raleqbidv 3152 |
. . . . . 6
|
| 18 | 4, 17 | raleqbidv 3152 |
. . . . 5
|
| 19 | 18 | ralbidv 2986 |
. . . 4
|
| 20 | 5, 19 | rabeqbidv 3195 |
. . 3
|
| 21 | fveq2 6191 |
. . . . . 6
| |
| 22 | lnoval.2 |
. . . . . 6
| |
| 23 | 21, 22 | syl6eqr 2674 |
. . . . 5
|
| 24 | 23 | oveq1d 6665 |
. . . 4
|
| 25 | fveq2 6191 |
. . . . . . . . 9
| |
| 26 | lnoval.4 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl6eqr 2674 |
. . . . . . . 8
|
| 28 | fveq2 6191 |
. . . . . . . . . 10
| |
| 29 | lnoval.6 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl6eqr 2674 |
. . . . . . . . 9
|
| 31 | 30 | oveqd 6667 |
. . . . . . . 8
|
| 32 | eqidd 2623 |
. . . . . . . 8
| |
| 33 | 27, 31, 32 | oveq123d 6671 |
. . . . . . 7
|
| 34 | 33 | eqeq2d 2632 |
. . . . . 6
|
| 35 | 34 | 2ralbidv 2989 |
. . . . 5
|
| 36 | 35 | ralbidv 2986 |
. . . 4
|
| 37 | 24, 36 | rabeqbidv 3195 |
. . 3
|
| 38 | df-lno 27599 |
. . 3
| |
| 39 | ovex 6678 |
. . . 4
| |
| 40 | 39 | rabex 4813 |
. . 3
|
| 41 | 20, 37, 38, 40 | ovmpt2 6796 |
. 2
|
| 42 | 1, 41 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-lno 27599 |
| This theorem is referenced by: islno 27608 hhlnoi 28759 |
| Copyright terms: Public domain | W3C validator |