| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isibl | Structured version Visualization version Unicode version | ||
| Description: The predicate " |
| Ref | Expression |
|---|---|
| isibl.1 |
|
| isibl.2 |
|
| isibl.3 |
|
| isibl.4 |
|
| Ref | Expression |
|---|---|
| isibl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6201 |
. . . . . . . . 9
| |
| 2 | breq2 4657 |
. . . . . . . . . . 11
| |
| 3 | 2 | anbi2d 740 |
. . . . . . . . . 10
|
| 4 | id 22 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | ifbieq1d 4109 |
. . . . . . . . 9
|
| 6 | 1, 5 | csbie 3559 |
. . . . . . . 8
|
| 7 | dmeq 5324 |
. . . . . . . . . . 11
| |
| 8 | 7 | eleq2d 2687 |
. . . . . . . . . 10
|
| 9 | fveq1 6190 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 11 | 10 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 12 | 11 | breq2d 4665 |
. . . . . . . . . 10
|
| 13 | 8, 12 | anbi12d 747 |
. . . . . . . . 9
|
| 14 | 13, 11 | ifbieq1d 4109 |
. . . . . . . 8
|
| 15 | 6, 14 | syl5eq 2668 |
. . . . . . 7
|
| 16 | 15 | mpteq2dv 4745 |
. . . . . 6
|
| 17 | 16 | fveq2d 6195 |
. . . . 5
|
| 18 | 17 | eleq1d 2686 |
. . . 4
|
| 19 | 18 | ralbidv 2986 |
. . 3
|
| 20 | df-ibl 23391 |
. . 3
| |
| 21 | 19, 20 | elrab2 3366 |
. 2
|
| 22 | isibl.3 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eleq2d 2687 |
. . . . . . . . . . 11
|
| 24 | 23 | anbi1d 741 |
. . . . . . . . . 10
|
| 25 | 24 | ifbid 4108 |
. . . . . . . . 9
|
| 26 | isibl.4 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 28 | 27 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 29 | isibl.2 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | eqtr4d 2659 |
. . . . . . . . . 10
|
| 31 | 30 | ibllem 23531 |
. . . . . . . . 9
|
| 32 | 25, 31 | eqtrd 2656 |
. . . . . . . 8
|
| 33 | 32 | mpteq2dv 4745 |
. . . . . . 7
|
| 34 | isibl.1 |
. . . . . . 7
| |
| 35 | 33, 34 | eqtr4d 2659 |
. . . . . 6
|
| 36 | 35 | fveq2d 6195 |
. . . . 5
|
| 37 | 36 | eleq1d 2686 |
. . . 4
|
| 38 | 37 | ralbidv 2986 |
. . 3
|
| 39 | 38 | anbi2d 740 |
. 2
|
| 40 | 21, 39 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-ibl 23391 |
| This theorem is referenced by: isibl2 23533 ibl0 23553 iblempty 40181 |
| Copyright terms: Public domain | W3C validator |