MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ii Structured version   Visualization version   Unicode version

Definition df-ii 22680
Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
df-ii  |-  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )

Detailed syntax breakdown of Definition df-ii
StepHypRef Expression
1 cii 22678 . 2  class  II
2 cabs 13974 . . . . 5  class  abs
3 cmin 10266 . . . . 5  class  -
42, 3ccom 5118 . . . 4  class  ( abs 
o.  -  )
5 cc0 9936 . . . . . 6  class  0
6 c1 9937 . . . . . 6  class  1
7 cicc 12178 . . . . . 6  class  [,]
85, 6, 7co 6650 . . . . 5  class  ( 0 [,] 1 )
98, 8cxp 5112 . . . 4  class  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )
104, 9cres 5116 . . 3  class  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
11 cmopn 19736 . . 3  class  MetOpen
1210, 11cfv 5888 . 2  class  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) )
131, 12wceq 1483 1  wff  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  iitopon  22682  dfii2  22685  dfii3  22686  lebnumii  22765
  Copyright terms: Public domain W3C validator