MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   Unicode version

Theorem lebnumii 22765
Description: Specialize the Lebesgue number lemma lebnum 22763 to the unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. n  e.  NN  A. k  e.  ( 1 ... n
) E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] ( k  /  n
) )  C_  u
)
Distinct variable group:    k, n, u, U

Proof of Theorem lebnumii
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 22680 . . 3  |-  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
2 cnmet 22575 . . . . 5  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
3 unitssre 12319 . . . . . 6  |-  ( 0 [,] 1 )  C_  RR
4 ax-resscn 9993 . . . . . 6  |-  RR  C_  CC
53, 4sstri 3612 . . . . 5  |-  ( 0 [,] 1 )  C_  CC
6 metres2 22168 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( Met `  CC )  /\  (
0 [,] 1 ) 
C_  CC )  -> 
( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  e.  ( Met `  (
0 [,] 1 ) ) )
72, 5, 6mp2an 708 . . . 4  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  ( Met `  ( 0 [,] 1 ) )
87a1i 11 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  ( Met `  ( 0 [,] 1 ) ) )
9 iicmp 22689 . . . 4  |-  II  e.  Comp
109a1i 11 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  II  e.  Comp )
11 simpl 473 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  U  C_  II )
12 simpr 477 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( 0 [,] 1 )  = 
U. U )
131, 8, 10, 11, 12lebnum 22763 . 2  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. r  e.  RR+  A. x  e.  ( 0 [,] 1
) E. u  e.  U  ( x (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u )
14 rpreccl 11857 . . . . . . . 8  |-  ( r  e.  RR+  ->  ( 1  /  r )  e.  RR+ )
1514adantl 482 . . . . . . 7  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR+ )
1615rpred 11872 . . . . . 6  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR )
1715rpge0d 11876 . . . . . 6  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  0  <_  ( 1  /  r ) )
18 flge0nn0 12621 . . . . . 6  |-  ( ( ( 1  /  r
)  e.  RR  /\  0  <_  ( 1  / 
r ) )  -> 
( |_ `  (
1  /  r ) )  e.  NN0 )
1916, 17, 18syl2anc 693 . . . . 5  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( |_ `  ( 1  /  r
) )  e.  NN0 )
20 nn0p1nn 11332 . . . . 5  |-  ( ( |_ `  ( 1  /  r ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  NN )
2119, 20syl 17 . . . 4  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( ( |_ `  ( 1  / 
r ) )  +  1 )  e.  NN )
22 elfznn 12370 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  k  e.  NN )
2322adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  NN )
2423nnrpd 11870 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  RR+ )
2521adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  NN )
2625nnrpd 11870 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  RR+ )
2724, 26rpdivcld 11889 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR+ )
2827rpred 11872 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR )
2927rpge0d 11876 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )
30 elfzle2 12345 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  k  <_  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
3130adantl 482 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  <_  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
3225nnred 11035 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  RR )
3332recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  CC )
3433mulid1d 10057 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 )  =  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
3531, 34breqtrrd 4681 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  <_  ( ( ( |_
`  ( 1  / 
r ) )  +  1 )  x.  1 ) )
3623nnred 11035 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  RR )
37 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
3837a1i 11 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  1  e.  RR )
3925nngt0d 11064 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
40 ledivmul 10899 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  1  e.  RR  /\  (
( ( |_ `  ( 1  /  r
) )  +  1 )  e.  RR  /\  0  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  ->  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1  <->  k  <_  (
( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 ) ) )
4136, 38, 32, 39, 40syl112anc 1330 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  <_  1  <->  k  <_  ( ( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 ) ) )
4235, 41mpbird 247 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <_  1 )
43 0re 10040 . . . . . . . . 9  |-  0  e.  RR
4443, 37elicc2i 12239 . . . . . . . 8  |-  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 )  <->  ( (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR  /\  0  <_  ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  /\  ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1 ) )
4528, 29, 42, 44syl3anbrc 1246 . . . . . . 7  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 ) )
46 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  (
x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r ) )
4746sseq1d 3632 . . . . . . . . 9  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  (
( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u 
<->  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
4847rexbidv 3052 . . . . . . . 8  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  ( E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u 
<->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
4948rspcv 3305 . . . . . . 7  |-  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
5045, 49syl 17 . . . . . 6  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
51 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR+ )
5251rpred 11872 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR )
5328, 52resubcld 10458 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  e.  RR )
5453rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  e.  RR* )
5528, 52readdcld 10069 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r )  e.  RR )
5655rexrd 10089 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r )  e.  RR* )
57 nnm1nn0 11334 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
5823, 57syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
5958nn0red 11352 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  RR )
6059, 25nndivred 11069 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR )
6136recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  CC )
6259recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  CC )
6325nnne0d 11065 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  =/=  0 )
6461, 62, 33, 63divsubdird 10840 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  (
k  -  1 ) )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  =  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ) )
65 ax-1cn 9994 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
66 nncan 10310 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( k  -  (
k  -  1 ) )  =  1 )
6761, 65, 66sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  ( k  -  1 ) )  =  1 )
6867oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  (
k  -  1 ) )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  =  ( 1  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
6964, 68eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  =  ( 1  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
7051rprecred 11883 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  r )  e.  RR )
71 flltp1 12601 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  r )  e.  RR  ->  (
1  /  r )  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
7270, 71syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  r )  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
73 rpgt0 11844 . . . . . . . . . . . . . . . 16  |-  ( r  e.  RR+  ->  0  < 
r )
7473ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <  r )
75 ltdiv23 10914 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( r  e.  RR  /\  0  <  r )  /\  ( ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  -> 
( ( 1  / 
r )  <  (
( |_ `  (
1  /  r ) )  +  1 )  <-> 
( 1  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  <  r ) )
7638, 52, 74, 32, 39, 75syl122anc 1335 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( 1  /  r
)  <  ( ( |_ `  ( 1  / 
r ) )  +  1 )  <->  ( 1  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  < 
r ) )
7772, 76mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <  r )
7869, 77eqbrtrd 4675 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  <  r )
7928, 60, 52, 78ltsub23d 10632 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  <  ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
8028, 51ltaddrpd 11905 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) )
81 iccssioo 12242 . . . . . . . . . . 11  |-  ( ( ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r )  e.  RR*  /\  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r )  e.  RR* )  /\  ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r )  <  (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  /\  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  <  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r ) ) )
8254, 56, 79, 80, 81syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r ) ) )
83 0red 10041 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  e.  RR )
8458nn0ge0d 11354 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( k  -  1 ) )
85 divge0 10892 . . . . . . . . . . . 12  |-  ( ( ( ( k  - 
1 )  e.  RR  /\  0  <_  ( k  -  1 ) )  /\  ( ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  -> 
0  <_  ( (
k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )
8659, 84, 32, 39, 85syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )
87 iccss 12241 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  /\  ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1 ) )  -> 
( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  ( 0 [,] 1 ) )
8883, 38, 86, 42, 87syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( 0 [,] 1 ) )
8982, 88ssind 3837 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1
) ) )
90 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
9190rexmet 22594 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
9291a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR ) )
93 sseqin2 3817 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 ) 
C_  RR  <->  ( RR  i^i  ( 0 [,] 1
) )  =  ( 0 [,] 1 ) )
943, 93mpbi 220 . . . . . . . . . . . 12  |-  ( RR 
i^i  ( 0 [,] 1 ) )  =  ( 0 [,] 1
)
9545, 94syl6eleqr 2712 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( RR  i^i  ( 0 [,] 1
) ) )
96 rpxr 11840 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e. 
RR* )
9796ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR* )
98 xpss12 5225 . . . . . . . . . . . . . . 15  |-  ( ( ( 0 [,] 1
)  C_  RR  /\  (
0 [,] 1 ) 
C_  RR )  -> 
( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  C_  ( RR  X.  RR ) )
993, 3, 98mp2an 708 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  C_  ( RR  X.  RR )
100 resabs1 5427 . . . . . . . . . . . . . 14  |-  ( ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) 
C_  ( RR  X.  RR )  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
10199, 100ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
102101eqcomi 2631 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  =  ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
103102blres 22236 . . . . . . . . . . 11  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( RR  i^i  ( 0 [,] 1
) )  /\  r  e.  RR* )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  i^i  ( 0 [,] 1 ) ) )
10492, 95, 97, 103syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  i^i  ( 0 [,] 1 ) ) )
10590bl2ioo 22595 . . . . . . . . . . . 12  |-  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  e.  RR  /\  r  e.  RR )  ->  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r ) (,) (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) ) )
10628, 52, 105syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) ) )
107106ineq1d 3813 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  i^i  ( 0 [,] 1
) )  =  ( ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r ) (,) (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1 ) ) )
108104, 107eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  -  r
) (,) ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1 ) ) )
10989, 108sseqtr4d 3642 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r ) )
110 sstr2 3610 . . . . . . . 8  |-  ( ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  ->  ( (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u ) )
111109, 110syl 17 . . . . . . 7  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )  C_  u
) )
112111reximdv 3016 . . . . . 6  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  u )
)
11350, 112syld 47 . . . . 5  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  u )
)
114113ralrimdva 2969 . . . 4  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( A. x  e.  ( 0 [,] 1 ) E. u  e.  U  ( x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  A. k  e.  ( 1 ... ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u ) )
115 oveq2 6658 . . . . . 6  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
1 ... n )  =  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )
116 oveq2 6658 . . . . . . . . 9  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( k  -  1 )  /  n )  =  ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
117 oveq2 6658 . . . . . . . . 9  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
k  /  n )  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
118116, 117oveq12d 6668 . . . . . . . 8  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( ( k  - 
1 )  /  n
) [,] ( k  /  n ) )  =  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ) )
119118sseq1d 3632 . . . . . . 7  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( ( ( k  -  1 )  /  n ) [,] (
k  /  n ) )  C_  u  <->  ( (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) [,] ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  C_  u ) )
120119rexbidv 3052 . . . . . 6  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  ( E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] (
k  /  n ) )  C_  u  <->  E. u  e.  U  ( (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) [,] ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  C_  u ) )
121115, 120raleqbidv 3152 . . . . 5  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  ( A. k  e.  (
1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u  <->  A. k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )  C_  u
) )
122121rspcev 3309 . . . 4  |-  ( ( ( ( |_ `  ( 1  /  r
) )  +  1 )  e.  NN  /\  A. k  e.  ( 1 ... ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u )  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u )
12321, 114, 122syl6an 568 . . 3  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( A. x  e.  ( 0 [,] 1 ) E. u  e.  U  ( x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u ) )
124123rexlimdva 3031 . 2  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( E. r  e.  RR+  A. x  e.  ( 0 [,] 1
) E. u  e.  U  ( x (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u ) )
12513, 124mpd 15 1  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. n  e.  NN  A. k  e.  ( 1 ... n
) E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] ( k  /  n
) )  C_  u
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   U.cuni 4436   class class class wbr 4653    X. cxp 5112    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   ...cfz 12326   |_cfl 12591   abscabs 13974   *Metcxmt 19731   Metcme 19732   ballcbl 19733   Compccmp 21189   IIcii 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680
This theorem is referenced by:  cvmliftlem15  31280
  Copyright terms: Public domain W3C validator