Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjex Structured version   Visualization version   Unicode version

Theorem disjex 29405
Description: Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.)
Assertion
Ref Expression
disjex  |-  ( ( E. z ( z  e.  A  /\  z  e.  B )  ->  A  =  B )  <->  ( A  =  B  \/  ( A  i^i  B )  =  (/) ) )
Distinct variable groups:    z, A    z, B

Proof of Theorem disjex
StepHypRef Expression
1 orcom 402 . 2  |-  ( ( A  =  B  \/  -.  E. z ( z  e.  A  /\  z  e.  B ) )  <->  ( -.  E. z ( z  e.  A  /\  z  e.  B )  \/  A  =  B ) )
2 df-in 3581 . . . . . 6  |-  ( A  i^i  B )  =  { z  |  ( z  e.  A  /\  z  e.  B ) }
32neeq1i 2858 . . . . 5  |-  ( ( A  i^i  B )  =/=  (/)  <->  { z  |  ( z  e.  A  /\  z  e.  B ) }  =/=  (/) )
4 abn0 3954 . . . . 5  |-  ( { z  |  ( z  e.  A  /\  z  e.  B ) }  =/=  (/)  <->  E. z ( z  e.  A  /\  z  e.  B ) )
53, 4bitr2i 265 . . . 4  |-  ( E. z ( z  e.  A  /\  z  e.  B )  <->  ( A  i^i  B )  =/=  (/) )
65necon2bbii 2845 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  -.  E. z
( z  e.  A  /\  z  e.  B
) )
76orbi2i 541 . 2  |-  ( ( A  =  B  \/  ( A  i^i  B )  =  (/) )  <->  ( A  =  B  \/  -.  E. z ( z  e.  A  /\  z  e.  B ) ) )
8 imor 428 . 2  |-  ( ( E. z ( z  e.  A  /\  z  e.  B )  ->  A  =  B )  <->  ( -.  E. z ( z  e.  A  /\  z  e.  B )  \/  A  =  B ) )
91, 7, 83bitr4ri 293 1  |-  ( ( E. z ( z  e.  A  /\  z  e.  B )  ->  A  =  B )  <->  ( A  =  B  \/  ( A  i^i  B )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794    i^i cin 3573   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator