| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-itgm | Structured version Visualization version Unicode version | ||
| Description: Define the Bochner
integral as the extension by continuity of the
Bochnel integral for simple functions.
Bogachev first defines 'fundamental in the mean' sequences, in
definition 2.3.1 of [Bogachev] p. 116,
and notes that those are actually
Cauchy sequences for the pseudometric He then defines the Bochner integral in chapter 2.4.4 in [Bogachev] p. 118. The definition of the Lebesgue integral, df-itg 23392. (Contributed by Thierry Arnoux, 13-Feb-2018.) |
| Ref | Expression |
|---|---|
| df-itgm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | citgm 30389 |
. 2
| |
| 2 | vw |
. . 3
| |
| 3 | vm |
. . 3
| |
| 4 | cvv 3200 |
. . 3
| |
| 5 | cmeas 30258 |
. . . . 5
| |
| 6 | 5 | crn 5115 |
. . . 4
|
| 7 | 6 | cuni 4436 |
. . 3
|
| 8 | 2 | cv 1482 |
. . . . 5
|
| 9 | 3 | cv 1482 |
. . . . 5
|
| 10 | csitg 30391 |
. . . . 5
| |
| 11 | 8, 9, 10 | co 6650 |
. . . 4
|
| 12 | csitm 30390 |
. . . . . . 7
| |
| 13 | 8, 9, 12 | co 6650 |
. . . . . 6
|
| 14 | cmetu 19737 |
. . . . . 6
| |
| 15 | 13, 14 | cfv 5888 |
. . . . 5
|
| 16 | cuss 22057 |
. . . . . 6
| |
| 17 | 8, 16 | cfv 5888 |
. . . . 5
|
| 18 | ccnext 21863 |
. . . . 5
| |
| 19 | 15, 17, 18 | co 6650 |
. . . 4
|
| 20 | 11, 19 | cfv 5888 |
. . 3
|
| 21 | 2, 3, 4, 7, 20 | cmpt2 6652 |
. 2
|
| 22 | 1, 21 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |