HomeHome Metamath Proof Explorer
Theorem List (p. 305 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 30401-30500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsibfinima 30401 The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  W  e.  TopSp )   &    |-  ( ph  ->  J  e.  Fre )   =>    |-  ( ( (
 ph  /\  X  e.  ran 
 F  /\  Y  e.  ran 
 G )  /\  ( X  =/=  .0.  \/  Y  =/=  .0.  ) )  ->  ( M `  ( ( `' F " { X } )  i^i  ( `' G " { Y } ) ) )  e.  ( 0 [,) +oo ) )
 
Theoremsibfof 30402 Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  C  =  ( Base `  K )   &    |-  ( ph  ->  W  e.  TopSp )   &    |-  ( ph  ->  .+ 
 : ( B  X.  B ) --> C )   &    |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  K  e.  TopSp )   &    |-  ( ph  ->  J  e.  Fre )   &    |-  ( ph  ->  (  .0.  .+  .0.  )  =  ( 0g
 `  K ) )   =>    |-  ( ph  ->  ( F  oF  .+  G )  e.  dom  ( Ksitg M ) )
 
Theoremsitgfval 30403* Value of the Bochner integral for a simple function  F. (Contributed by Thierry Arnoux, 30-Jan-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   =>    |-  ( ph  ->  ( ( Wsitg M ) `  F )  =  ( W  gsumg  ( x  e.  ( ran  F 
 \  {  .0.  }
 )  |->  ( ( H `
  ( M `  ( `' F " { x } ) ) ) 
 .x.  x ) ) ) )
 
Theoremsitgclg 30404* Closure of the Bochner integral on simple functions, generic version. See sitgclbn 30405 for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018.) (Proof shortened by AV, 12-Dec-2019.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  G  =  (Scalar `  W )   &    |-  D  =  ( (
 dist `  G )  |`  ( ( Base `  G )  X.  ( Base `  G ) ) )   &    |-  ( ph  ->  W  e.  TopSp )   &    |-  ( ph  ->  W  e. CMnd )   &    |-  ( ph  ->  (Scalar `  W )  e. ℝExt  )   &    |-  ( ( ph  /\  m  e.  ( H
 " ( 0 [,) +oo ) )  /\  x  e.  B )  ->  ( m  .x.  x )  e.  B )   =>    |-  ( ph  ->  (
 ( Wsitg M ) `
  F )  e.  B )
 
Theoremsitgclbn 30405 Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  W  e. Ban )   &    |-  ( ph  ->  (Scalar `  W )  e. ℝExt  )   =>    |-  ( ph  ->  (
 ( Wsitg M ) `
  F )  e.  B )
 
Theoremsitgclcn 30406 Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the complex numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  W  e. Ban )   &    |-  ( ph  ->  (Scalar `  W )  =fld )   =>    |-  ( ph  ->  (
 ( Wsitg M ) `
  F )  e.  B )
 
Theoremsitgclre 30407 Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  W  e. Ban )   &    |-  ( ph  ->  (Scalar `  W )  = RRfld )   =>    |-  ( ph  ->  (
 ( Wsitg M ) `
  F )  e.  B )
 
Theoremsitg0 30408 The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  W  e.  TopSp )   &    |-  ( ph  ->  W  e.  Mnd )   =>    |-  ( ph  ->  (
 ( Wsitg M ) `
  ( U. dom  M  X.  {  .0.  }
 ) )  =  .0.  )
 
Theoremsitgf 30409* The integral for simple functions is itself a function. (Contributed by Thierry Arnoux, 13-Feb-2018.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  (
 ( ph  /\  f  e. 
 dom  ( Wsitg M ) )  ->  ( ( Wsitg M ) `  f )  e.  B )   =>    |-  ( ph  ->  ( Wsitg M ) : dom  ( Wsitg M ) --> B )
 
Theoremsitgaddlemb 30410 Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.)
 |-  B  =  ( Base `  W )   &    |-  J  =  ( TopOpen `  W )   &    |-  S  =  (sigaGen `  J )   &    |-  .0.  =  ( 0g `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  H  =  (RRHom `  (Scalar `  W )
 )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  W  e.  TopSp )   &    |-  ( ph  ->  ( Wv  ( H " ( 0 [,) +oo ) ) )  e. SLMod
 )   &    |-  ( ph  ->  J  e.  Fre )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  (Scalar `  W )  e. ℝExt  )   &    |-  .+  =  ( +g  `  W )   =>    |-  (
 ( ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  ( ( H `  ( M `  ( ( `' F " { ( 1st `  p ) }
 )  i^i  ( `' G " { ( 2nd `  p ) } )
 ) ) )  .x.  ( 2nd `  p )
 )  e.  B )
 
Theoremsitmval 30411* Value of the simple function integral metric for a given space  W and measure  M. (Contributed by Thierry Arnoux, 30-Jan-2018.)
 |-  D  =  ( dist `  W )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   =>    |-  ( ph  ->  ( Wsitm M )  =  ( f  e.  dom  ( Wsitg M ) ,  g  e.  dom  ( Wsitg M )  |->  ( ( (
 RR*ss  ( 0 [,] +oo ) )sitg M ) `  ( f  oF D g ) ) ) )
 
Theoremsitmfval 30412 Value of the integral distance between two simple functions. (Contributed by Thierry Arnoux, 30-Jan-2018.)
 |-  D  =  ( dist `  W )   &    |-  ( ph  ->  W  e.  V )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )   =>    |-  ( ph  ->  ( F ( Wsitm M ) G )  =  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) `  ( F  oF D G ) ) )
 
Theoremsitmcl 30413 Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
 |-  ( ph  ->  W  e.  Mnd )   &    |-  ( ph  ->  W  e.  *MetSp )   &    |-  ( ph  ->  M  e.  U. ran measures )   &    |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )   &    |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )   =>    |-  ( ph  ->  ( F ( Wsitm M ) G )  e.  (
 0 [,] +oo ) )
 
Theoremsitmf 30414 The integral metric as a function. (Contributed by Thierry Arnoux, 13-Mar-2018.)
 |-  ( ph  ->  W  e.  Mnd )   &    |-  ( ph  ->  W  e.  *MetSp )   &    |-  ( ph  ->  M  e.  U. ran measures )   =>    |-  ( ph  ->  ( Wsitm M ) : ( dom  ( Wsitg
 M )  X.  dom  ( Wsitg M ) ) --> ( 0 [,] +oo ) )
 
Definitiondf-itgm 30415* Define the Bochner integral as the extension by continuity of the Bochnel integral for simple functions.

Bogachev first defines 'fundamental in the mean' sequences, in definition 2.3.1 of [Bogachev] p. 116, and notes that those are actually Cauchy sequences for the pseudometric  ( wsitm m ).

He then defines the Bochner integral in chapter 2.4.4 in [Bogachev] p. 118. The definition of the Lebesgue integral, df-itg 23392.

(Contributed by Thierry Arnoux, 13-Feb-2018.)

 |- itgm  =  ( w  e.  _V ,  m  e.  U. ran measures  |->  ( ( (metUnif `  ( wsitm m ) )CnExt (UnifSt `  w ) ) `  ( wsitg m ) ) )
 
20.3.18  Euler's partition theorem
 
Theoremoddpwdc 30416* Lemma for eulerpart 30444. The function  F that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
 |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   =>    |-  F : ( J  X.  NN0 ) -1-1-onto-> NN
 
Theoremoddpwdcv 30417* Lemma for eulerpart 30444: value of the  F function. (Contributed by Thierry Arnoux, 9-Sep-2017.)
 |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   =>    |-  ( W  e.  ( J  X.  NN0 )  ->  ( F `  W )  =  ( (
 2 ^ ( 2nd `  W ) )  x.  ( 1st `  W ) ) )
 
Theoremeulerpartlemsv1 30418* Lemma for eulerpart 30444. Value of the sum of a partition  A. (Contributed by Thierry Arnoux, 26-Aug-2018.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  ->  ( S `  A )  =  sum_ k  e.  NN  ( ( A `  k )  x.  k
 ) )
 
Theoremeulerpartlemelr 30419* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 8-Aug-2018.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  ->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin ) )
 
Theoremeulerpartlemsv2 30420* Lemma for eulerpart 30444. Value of the sum of a finite partition  A (Contributed by Thierry Arnoux, 19-Aug-2018.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN )
 ( ( A `  k )  x.  k
 ) )
 
Theoremeulerpartlemsf 30421* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 8-Aug-2018.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  S : ( ( NN0  ^m  NN )  i^i  R ) --> NN0
 
Theoremeulerpartlems 30422* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  ( ( A  e.  ( ( NN0  ^m 
 NN )  i^i  R )  /\  t  e.  ( ZZ>=
 `  ( ( S `
  A )  +  1 ) ) ) 
 ->  ( A `  t
 )  =  0 )
 
Theoremeulerpartlemsv3 30423* Lemma for eulerpart 30444. Value of the sum of a finite partition  A (Contributed by Thierry Arnoux, 19-Aug-2018.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  ( A  e.  ( ( NN0  ^m  NN )  i^i  R )  ->  ( S `  A )  =  sum_ k  e.  (
 1 ... ( S `  A ) ) ( ( A `  k
 )  x.  k ) )
 
Theoremeulerpartlemgc 30424* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 9-Aug-2018.)
 |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  S  =  ( f  e.  ( (
 NN0  ^m  NN )  i^i 
 R )  |->  sum_ k  e.  NN  ( ( f `
  k )  x.  k ) )   =>    |-  ( ( A  e.  ( ( NN0  ^m 
 NN )  i^i  R )  /\  ( t  e. 
 NN  /\  n  e.  (bits `  ( A `  t ) ) ) )  ->  ( (
 2 ^ n )  x.  t )  <_  ( S `  A ) )
 
Theoremeulerpartleme 30425* Lemma for eulerpart 30444. (Contributed by Mario Carneiro, 26-Jan-2015.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   =>    |-  ( A  e.  P  <->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e. 
 NN  ( ( A `
  k )  x.  k )  =  N ) )
 
Theoremeulerpartlemv 30426* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 19-Aug-2018.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   =>    |-  ( A  e.  P  <->  ( A : NN --> NN0  /\  ( `' A " NN )  e.  Fin  /\  sum_ k  e.  ( `' A " NN ) ( ( A `
  k )  x.  k )  =  N ) )
 
Theoremeulerpartlemo 30427* Lemma for eulerpart 30444: 
O is the set of odd partitions of  N. (Contributed by Thierry Arnoux, 10-Aug-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   =>    |-  ( A  e.  O 
 <->  ( A  e.  P  /\  A. n  e.  ( `' A " NN )  -.  2  ||  n ) )
 
Theoremeulerpartlemd 30428* Lemma for eulerpart 30444: 
D is the set of distinct part. of  N. (Contributed by Thierry Arnoux, 11-Aug-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   =>    |-  ( A  e.  D 
 <->  ( A  e.  P  /\  ( A " NN )  C_  { 0 ,  1 } ) )
 
Theoremeulerpartlem1 30429* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   =>    |-  M : H -1-1-onto-> ( ~P ( J  X.  NN0 )  i^i  Fin )
 
Theoremeulerpartlemb 30430* Lemma for eulerpart 30444. The set of all partitions of  N is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   =>    |-  P  e.  Fin
 
Theoremeulerpartlemt0 30431* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 19-Sep-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   =>    |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
 
Theoremeulerpartlemf 30432* Lemma for eulerpart 30444: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   =>    |-  ( ( A  e.  ( T  i^i  R ) 
 /\  t  e.  ( NN  \  J ) ) 
 ->  ( A `  t
 )  =  0 )
 
Theoremeulerpartlemt 30433* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 19-Sep-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   =>    |-  ( ( NN0  ^m  J )  i^i  R )  = 
 ran  ( m  e.  ( T  i^i  R )  |->  ( m  |`  J ) )
 
Theoremeulerpartgbij 30434* Lemma for eulerpart 30444: The  G function is a bijection. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   =>    |-  G : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
 
Theoremeulerpartlemgv 30435* Lemma for eulerpart 30444: value of the function  G. (Contributed by Thierry Arnoux, 13-Nov-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   =>    |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A )  =  ( (𝟭 `  NN ) `  ( F "
 ( M `  (bits  o.  ( A  |`  J ) ) ) ) ) )
 
Theoremeulerpartlemr 30436* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 13-Nov-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   =>    |-  O  =  ( ( T  i^i  R )  i^i 
 P )
 
Theoremeulerpartlemmf 30437* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   =>    |-  ( A  e.  ( T  i^i  R )  ->  (bits  o.  ( A  |`  J ) )  e.  H )
 
Theoremeulerpartlemgvv 30438* Lemma for eulerpart 30444: value of the function  G evaluated. (Contributed by Thierry Arnoux, 10-Aug-2018.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   =>    |-  ( ( A  e.  ( T  i^i  R ) 
 /\  B  e.  NN )  ->  ( ( G `
  A ) `  B )  =  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  B ,  1 ,  0 ) )
 
Theoremeulerpartlemgu 30439* Lemma for eulerpart 30444: Rewriting the  U set for an odd partition Note that interestingly, this proof reuses marypha2lem2 8342. (Contributed by Thierry Arnoux, 10-Aug-2018.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   &    |-  U  =  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) )   =>    |-  ( A  e.  ( T  i^i  R )  ->  U  =  { <. t ,  n >.  |  (
 t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  ( (bits  o.  A ) `  t ) ) } )
 
Theoremeulerpartlemgh 30440* Lemma for eulerpart 30444: The  F function is a bijection on the  U subsets. (Contributed by Thierry Arnoux, 15-Aug-2018.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   &    |-  U  =  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) )   =>    |-  ( A  e.  ( T  i^i  R )  ->  ( F  |`  U ) : U -1-1-onto-> { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
 
Theoremeulerpartlemgf 30441* Lemma for eulerpart 30444: Images under  G have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   =>    |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( G `  A ) " NN )  e. 
 Fin )
 
Theoremeulerpartlemgs2 30442* Lemma for eulerpart 30444: The  G function also preserves partition sums. (Contributed by Thierry Arnoux, 10-Sep-2017.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   &    |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  ( ( f `  k )  x.  k ) )   =>    |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `
  A ) )  =  ( S `  A ) )
 
Theoremeulerpartlemn 30443* Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 30-Aug-2018.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   &    |-  J  =  { z  e.  NN  |  -.  2  ||  z }   &    |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x ) )   &    |-  H  =  { r  e.  (
 ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
 Fin }   &    |-  M  =  ( r  e.  H  |->  {
 <. x ,  y >.  |  ( x  e.  J  /\  y  e.  (
 r `  x )
 ) } )   &    |-  R  =  { f  |  ( `' f " NN )  e.  Fin }   &    |-  T  =  {
 f  e.  ( NN0  ^m 
 NN )  |  ( `' f " NN )  C_  J }   &    |-  G  =  ( o  e.  ( T  i^i  R )  |->  ( (𝟭 `  NN ) `  ( F " ( M `
  (bits  o.  (
 o  |`  J ) ) ) ) ) )   &    |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  ( ( f `  k )  x.  k ) )   =>    |-  ( G  |`  O ) : O -1-1-onto-> D
 
Theoremeulerpart 30444* Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let  P be the set of all partitions of  N, represented as multisets of positive integers, which is to say functions from  NN to  NN0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals  N. Then the set 
O of all partitions that only consist of odd numbers and the set  D of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
 |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\ 
 sum_ k  e.  NN  ( ( f `  k )  x.  k
 )  =  N ) }   &    |-  O  =  {
 g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }   &    |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n )  <_  1 }   =>    |-  ( # `  O )  =  ( # `  D )
 
20.3.19  Sequences defined by strong recursion
 
Syntaxcsseq 30445 Sequences defined by strong recursion.
 class seqstr
 
Definitiondf-sseq 30446* Define a builder for sequences by strong recursion, i.e. by computing the value of the n-th element of the sequence from all preceding elements and not just the previous one. (Contributed by Thierry Arnoux, 21-Apr-2019.)
 |- seqstr  =  ( m  e.  _V ,  f  e.  _V  |->  ( m  u.  ( lastS  o.  seq ( # `  m ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
 <" ( f `  x ) "> ) ) ,  ( NN0  X.  { ( m ++ 
 <" ( f `  m ) "> ) } ) ) ) ) )
 
Theoremsubiwrd 30447 Lemma for sseqp1 30457. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  F : NN0 --> S )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( F  |`  ( 0..^ N ) )  e. Word  S )
 
Theoremsubiwrdlen 30448 Length of a subword of an infinite word. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  F : NN0 --> S )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( # `
  ( F  |`  ( 0..^ N ) ) )  =  N )
 
Theoremiwrdsplit 30449 Lemma for sseqp1 30457. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  F : NN0 --> S )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( F  |`  ( 0..^ ( N  +  1 ) ) )  =  ( ( F  |`  ( 0..^ N ) ) ++  <" ( F `  N ) "> ) )
 
Theoremsseqval 30450* Value of the strong sequence builder function. The set  W represents here the words of length greater than or equal to the lenght of the initial sequence  M. (Contributed by Thierry Arnoux, 21-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   =>    |-  ( ph  ->  ( Mseqstr F )  =  ( M  u.  ( lastS  o.  seq ( # `
  M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  { ( M ++ 
 <" ( F `  M ) "> ) } ) ) ) ) )
 
Theoremsseqfv1 30451 Value of the strong sequence builder function at one of its initial values. (Contributed by Thierry Arnoux, 21-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   &    |-  ( ph  ->  N  e.  ( 0..^ ( # `  M ) ) )   =>    |-  ( ph  ->  ( ( Mseqstr F ) `  N )  =  ( M `  N ) )
 
Theoremsseqfn 30452 A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   =>    |-  ( ph  ->  ( Mseqstr F )  Fn  NN0 )
 
Theoremsseqmw 30453 Lemma for sseqf 30454 amd sseqp1 30457. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   =>    |-  ( ph  ->  M  e.  W )
 
Theoremsseqf 30454 A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   =>    |-  ( ph  ->  ( Mseqstr F ) : NN0 --> S )
 
Theoremsseqfres 30455 The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   =>    |-  ( ph  ->  ( ( Mseqstr F )  |`  ( 0..^ ( # `  M ) ) )  =  M )
 
Theoremsseqfv2 30456* Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( # `  M ) ) )   =>    |-  ( ph  ->  ( ( Mseqstr F ) `  N )  =  ( lastS  `  (  seq ( # `  M ) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++  <" ( F `  x ) "> ) ) ,  ( NN0  X.  {
 ( M ++  <" ( F `  M ) "> ) } ) ) `
  N ) ) )
 
Theoremsseqp1 30457 Value of the strong sequence builder function at a successor. (Contributed by Thierry Arnoux, 24-Apr-2019.)
 |-  ( ph  ->  S  e.  _V )   &    |-  ( ph  ->  M  e. Word  S )   &    |-  W  =  (Word 
 S  i^i  ( `' #
 " ( ZZ>= `  ( # `
  M ) ) ) )   &    |-  ( ph  ->  F : W --> S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( # `  M ) ) )   =>    |-  ( ph  ->  ( ( Mseqstr F ) `  N )  =  ( F `  ( ( Mseqstr F )  |`  ( 0..^ N ) ) ) )
 
20.3.20  Fibonacci Numbers
 
Syntaxcfib 30458 The Fibonacci sequence.
 class Fibci
 
Definitiondf-fib 30459 Define the Fibonacci sequence, where that each element is the sum of the two preceding ones, starting from 0 and 1. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |- Fibci  =  (
 <" 0 1 ">seqstr ( w  e.  (Word  NN0 
 i^i  ( `' # " ( ZZ>=
 `  2 ) ) )  |->  ( ( w `
  ( ( # `  w )  -  2
 ) )  +  ( w `  ( ( # `  w )  -  1
 ) ) ) ) )
 
Theoremfiblem 30460 Lemma for fib0 30461, fib1 30462 and fibp1 30463. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  ( w  e.  (Word  NN0  i^i  ( `' # " ( ZZ>= `  2 ) ) ) 
 |->  ( ( w `  ( ( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w )  -  1 ) ) ) ) : (Word  NN0  i^i  ( `' # " ( ZZ>=
 `  ( # `  <" 0
 1 "> )
 ) ) ) --> NN0
 
Theoremfib0 30461 Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  0 )  =  0
 
Theoremfib1 30462 Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  1 )  =  1
 
Theoremfibp1 30463 Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  ( N  e.  NN  ->  (Fibci `  ( N  +  1 ) )  =  ( (Fibci `  ( N  -  1 ) )  +  (Fibci `  N ) ) )
 
Theoremfib2 30464 Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  2 )  =  1
 
Theoremfib3 30465 Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  3 )  =  2
 
Theoremfib4 30466 Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  4 )  =  3
 
Theoremfib5 30467 Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  5 )  =  5
 
Theoremfib6 30468 Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.)
 |-  (Fibci `  6 )  =  8
 
20.3.21  Probability
 
20.3.21.1  Probability Theory
 
Syntaxcprb 30469 Extend class notation to include the class of probability measures.
 class Prob
 
Definitiondf-prob 30470 Define the class of probability measures as the set of measures with total measure 1. (Contributed by Thierry Arnoux, 14-Sep-2016.)
 |- Prob  =  { p  e.  U. ran measures  |  ( p `  U. dom  p )  =  1 }
 
Theoremelprob 30471 The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.)
 |-  ( P  e. Prob  <->  ( P  e.  U.
 ran measures  /\  ( P `  U.
 dom  P )  =  1 ) )
 
Theoremdomprobmeas 30472 A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.)
 |-  ( P  e. Prob  ->  P  e.  (measures `  dom  P ) )
 
Theoremdomprobsiga 30473 The domain of a probability measure is a sigma-algebra. (Contributed by Thierry Arnoux, 23-Dec-2016.)
 |-  ( P  e. Prob  ->  dom  P  e.  U. ran sigAlgebra )
 
Theoremprobtot 30474 The probability of the universe set is 1. Second axiom of Kolmogorov. (Contributed by Thierry Arnoux, 8-Dec-2016.)
 |-  ( P  e. Prob  ->  ( P `
  U. dom  P )  =  1 )
 
Theoremprob01 30475 A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P )  ->  ( P `  A )  e.  ( 0 [,] 1 ) )
 
Theoremprobnul 30476 The probability of the empty event set is 0. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  ( P  e. Prob  ->  ( P `
  (/) )  =  0 )
 
Theoremunveldomd 30477 The universe is an element of the domain of the probability, the universe (entire probability space) being  U.
dom  P in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
 |-  ( ph  ->  P  e. Prob )   =>    |-  ( ph  ->  U. dom  P  e.  dom 
 P )
 
Theoremunveldom 30478 The universe is an element of the domain of the probability, the universe (entire probability space) being  U. dom  P in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.)
 |-  ( P  e. Prob  ->  U. dom  P  e.  dom  P )
 
Theoremnuleldmp 30479 The empty set is an element of the domain of the probability. (Contributed by Thierry Arnoux, 22-Jan-2017.)
 |-  ( P  e. Prob  ->  (/)  e.  dom  P )
 
Theoremprobcun 30480* The probability of the union of a countable disjoint set of events is the sum of their probabilities. (Third axiom of Kolmogorov) Here, the  sum_ construct cannot be used as it can handle infinite indexing set only if they are subsets of 
ZZ, which is not the case here. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  (
 ( P  e. Prob  /\  A  e.  ~P dom  P  /\  ( A  ~<_  om  /\ Disj  x  e.  A  x ) ) 
 ->  ( P `  U. A )  = Σ* x  e.  A ( P `  x ) )
 
Theoremprobun 30481 The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  ->  ( ( A  i^i  B )  =  (/)  ->  ( P `  ( A  u.  B ) )  =  ( ( P `  A )  +  ( P `  B ) ) ) )
 
Theoremprobdif 30482 The probability of the difference of two event sets. (Contributed by Thierry Arnoux, 12-Dec-2016.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  ->  ( P `  ( A 
 \  B ) )  =  ( ( P `
  A )  -  ( P `  ( A  i^i  B ) ) ) )
 
Theoremprobinc 30483 A probability law is increasing with regard to event set inclusion. (Contributed by Thierry Arnoux, 10-Feb-2017.)
 |-  (
 ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  A  C_  B )  ->  ( P `  A )  <_  ( P `
  B ) )
 
Theoremprobdsb 30484 The probability of the complement of a set. That is, the probability that the event  A does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P )  ->  ( P `  ( U. dom  P  \  A ) )  =  ( 1  -  ( P `  A ) ) )
 
Theoremprobmeasd 30485 A probability measure is a measure. (Contributed by Thierry Arnoux, 2-Feb-2017.)
 |-  ( ph  ->  P  e. Prob )   =>    |-  ( ph  ->  P  e.  U. ran measures )
 
Theoremprobvalrnd 30486 The value of a probability is a real number. (Contributed by Thierry Arnoux, 2-Feb-2017.)
 |-  ( ph  ->  P  e. Prob )   &    |-  ( ph  ->  A  e.  dom  P )   =>    |-  ( ph  ->  ( P `  A )  e. 
 RR )
 
Theoremprobtotrnd 30487 The probability of the universe set is finite. (Contributed by Thierry Arnoux, 2-Feb-2017.)
 |-  ( ph  ->  P  e. Prob )   =>    |-  ( ph  ->  ( P `  U.
 dom  P )  e.  RR )
 
Theoremtotprobd 30488* Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  ( ph  ->  P  e. Prob )   &    |-  ( ph  ->  A  e.  dom  P )   &    |-  ( ph  ->  B  e.  ~P dom  P )   &    |-  ( ph  ->  U. B  =  U. dom  P )   &    |-  ( ph  ->  B  ~<_  om )   &    |-  ( ph  -> Disj  b  e.  B  b )   =>    |-  ( ph  ->  ( P `  A )  = Σ* b  e.  B ( P `
  ( b  i^i 
 A ) ) )
 
Theoremtotprob 30489* Law of total probability. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P  /\  ( U. B  =  U. dom  P  /\  B  e.  ~P
 dom  P  /\  ( B  ~<_ 
 om  /\ Disj  b  e.  B  b ) ) ) 
 ->  ( P `  A )  = Σ* b  e.  B ( P `  ( b  i^i  A ) ) )
 
TheoremprobfinmeasbOLD 30490* Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  (
 ( M  e.  (measures `  S )  /\  ( M `  U. S )  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  x ) /𝑒  ( M `  U. S ) ) )  e. Prob
 )
 
Theoremprobfinmeasb 30491 Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  (
 ( M  e.  (measures `  S )  /\  ( M `  U. S )  e.  RR+ )  ->  ( M𝑓/𝑐 /𝑒  ( M ` 
 U. S ) )  e. Prob )
 
Theoremprobmeasb 30492* Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.)
 |-  (
 ( M  e.  (measures `  S )  /\  A  e.  S  /\  ( M `
  A )  e.  RR+ )  ->  ( x  e.  S  |->  ( ( M `  ( x  i^i  A ) ) 
 /  ( M `  A ) ) )  e. Prob )
 
20.3.21.2  Conditional Probabilities
 
Syntaxccprob 30493 Extends class notation with the conditional probability builder.
 class cprob
 
Definitiondf-cndprob 30494* Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
 |- cprob  =  ( p  e. Prob  |->  ( a  e.  dom  p ,  b  e.  dom  p  |->  ( ( p `  (
 a  i^i  b )
 )  /  ( p `  b ) ) ) )
 
Theoremcndprobval 30495 The value of the conditional probability , i.e. the probability for the event  A, given  B, under the probability law  P. (Contributed by Thierry Arnoux, 21-Jan-2017.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  ->  ( (cprob `  P ) `  <. A ,  B >. )  =  ( ( P `  ( A  i^i  B ) ) 
 /  ( P `  B ) ) )
 
Theoremcndprobin 30496 An identity linking conditional probability and intersection. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
 |-  (
 ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( P `  B )  =/=  0
 )  ->  ( (
 (cprob `  P ) `  <. A ,  B >. )  x.  ( P `
  B ) )  =  ( P `  ( A  i^i  B ) ) )
 
Theoremcndprob01 30497 The conditional probability has values in  [ 0 ,  1 ]. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
 |-  (
 ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( P `  B )  =/=  0
 )  ->  ( (cprob `  P ) `  <. A ,  B >. )  e.  (
 0 [,] 1 ) )
 
Theoremcndprobtot 30498 The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P  /\  ( P `  A )  =/=  0 )  ->  (
 (cprob `  P ) `  <. U. dom  P ,  A >. )  =  1 )
 
Theoremcndprobnul 30499 The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
 |-  (
 ( P  e. Prob  /\  A  e.  dom  P  /\  ( P `  A )  =/=  0 )  ->  (
 (cprob `  P ) `  <. (/) ,  A >. )  =  0 )
 
Theoremcndprobprob 30500* The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.)
 |-  (
 ( P  e. Prob  /\  B  e.  dom  P  /\  ( P `  B )  =/=  0 )  ->  (
 a  e.  dom  P  |->  ( (cprob `  P ) `  <. a ,  B >. ) )  e. Prob )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >