MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-kq Structured version   Visualization version   Unicode version

Definition df-kq 21497
Description: Define the Kolmogorov quotient. This is a function on topologies which maps a topology to its quotient under the topological distinguishability map, which takes a point to the set of open sets that contain it. Two points are mapped to the same image under this function iff they are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
df-kq  |- KQ  =  ( j  e.  Top  |->  ( j qTop  ( x  e. 
U. j  |->  { y  e.  j  |  x  e.  y } ) ) )
Distinct variable group:    x, j, y

Detailed syntax breakdown of Definition df-kq
StepHypRef Expression
1 ckq 21496 . 2  class KQ
2 vj . . 3  setvar  j
3 ctop 20698 . . 3  class  Top
42cv 1482 . . . 4  class  j
5 vx . . . . 5  setvar  x
64cuni 4436 . . . . 5  class  U. j
7 vy . . . . . . 7  setvar  y
85, 7wel 1991 . . . . . 6  wff  x  e.  y
98, 7, 4crab 2916 . . . . 5  class  { y  e.  j  |  x  e.  y }
105, 6, 9cmpt 4729 . . . 4  class  ( x  e.  U. j  |->  { y  e.  j  |  x  e.  y } )
11 cqtop 16163 . . . 4  class qTop
124, 10, 11co 6650 . . 3  class  ( j qTop  ( x  e.  U. j  |->  { y  e.  j  |  x  e.  y } ) )
132, 3, 12cmpt 4729 . 2  class  ( j  e.  Top  |->  ( j qTop  ( x  e.  U. j  |->  { y  e.  j  |  x  e.  y } ) ) )
141, 13wceq 1483 1  wff KQ  =  ( j  e.  Top  |->  ( j qTop  ( x  e. 
U. j  |->  { y  e.  j  |  x  e.  y } ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  kqval  21529  kqtop  21548  kqf  21550
  Copyright terms: Public domain W3C validator