MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval Structured version   Visualization version   Unicode version

Theorem qtopval 21498
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopval  |-  ( ( J  e.  V  /\  F  e.  W )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
Distinct variable groups:    F, s    J, s    V, s    X, s
Allowed substitution hint:    W( s)

Proof of Theorem qtopval
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( J  e.  V  ->  J  e.  _V )
2 elex 3212 . 2  |-  ( F  e.  W  ->  F  e.  _V )
3 imaexg 7103 . . . . 5  |-  ( F  e.  _V  ->  ( F " X )  e. 
_V )
4 pwexg 4850 . . . . 5  |-  ( ( F " X )  e.  _V  ->  ~P ( F " X )  e.  _V )
5 rabexg 4812 . . . . 5  |-  ( ~P ( F " X
)  e.  _V  ->  { s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  e.  _V )
63, 4, 53syl 18 . . . 4  |-  ( F  e.  _V  ->  { s  e.  ~P ( F
" X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  e.  _V )
76adantl 482 . . 3  |-  ( ( J  e.  _V  /\  F  e.  _V )  ->  { s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X )  e.  J }  e.  _V )
8 simpr 477 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  f  =  F )
9 simpl 473 . . . . . . . . 9  |-  ( ( j  =  J  /\  f  =  F )  ->  j  =  J )
109unieqd 4446 . . . . . . . 8  |-  ( ( j  =  J  /\  f  =  F )  ->  U. j  =  U. J )
11 qtopval.1 . . . . . . . 8  |-  X  = 
U. J
1210, 11syl6eqr 2674 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  U. j  =  X )
138, 12imaeq12d 5467 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  ( f " U. j )  =  ( F " X ) )
1413pweqd 4163 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ~P ( f " U. j )  =  ~P ( F " X ) )
158cnveqd 5298 . . . . . . . 8  |-  ( ( j  =  J  /\  f  =  F )  ->  `' f  =  `' F )
1615imaeq1d 5465 . . . . . . 7  |-  ( ( j  =  J  /\  f  =  F )  ->  ( `' f "
s )  =  ( `' F " s ) )
1716, 12ineq12d 3815 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( `' f
" s )  i^i  U. j )  =  ( ( `' F "
s )  i^i  X
) )
1817, 9eleq12d 2695 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ( ( ( `' f " s )  i^i  U. j )  e.  j  <->  ( ( `' F " s )  i^i  X )  e.  J ) )
1914, 18rabeqbidv 3195 . . . 4  |-  ( ( j  =  J  /\  f  =  F )  ->  { s  e.  ~P ( f " U. j )  |  ( ( `' f "
s )  i^i  U. j )  e.  j }  =  { s  e.  ~P ( F
" X )  |  ( ( `' F " s )  i^i  X
)  e.  J }
)
20 df-qtop 16167 . . . 4  |- qTop  =  ( j  e.  _V , 
f  e.  _V  |->  { s  e.  ~P (
f " U. j
)  |  ( ( `' f " s
)  i^i  U. j
)  e.  j } )
2119, 20ovmpt2ga 6790 . . 3  |-  ( ( J  e.  _V  /\  F  e.  _V  /\  {
s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X
)  e.  J }  e.  _V )  ->  ( J qTop  F )  =  {
s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X
)  e.  J }
)
227, 21mpd3an3 1425 . 2  |-  ( ( J  e.  _V  /\  F  e.  _V )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
231, 2, 22syl2an 494 1  |-  ( ( J  e.  V  /\  F  e.  W )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573   ~Pcpw 4158   U.cuni 4436   `'ccnv 5113   "cima 5117  (class class class)co 6650   qTop cqtop 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167
This theorem is referenced by:  qtopval2  21499  qtopres  21501  imastopn  21523
  Copyright terms: Public domain W3C validator