| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopval | Structured version Visualization version Unicode version | ||
| Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopval.1 |
|
| Ref | Expression |
|---|---|
| qtopval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | elex 3212 |
. 2
| |
| 3 | imaexg 7103 |
. . . . 5
| |
| 4 | pwexg 4850 |
. . . . 5
| |
| 5 | rabexg 4812 |
. . . . 5
| |
| 6 | 3, 4, 5 | 3syl 18 |
. . . 4
|
| 7 | 6 | adantl 482 |
. . 3
|
| 8 | simpr 477 |
. . . . . . 7
| |
| 9 | simpl 473 |
. . . . . . . . 9
| |
| 10 | 9 | unieqd 4446 |
. . . . . . . 8
|
| 11 | qtopval.1 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl6eqr 2674 |
. . . . . . 7
|
| 13 | 8, 12 | imaeq12d 5467 |
. . . . . 6
|
| 14 | 13 | pweqd 4163 |
. . . . 5
|
| 15 | 8 | cnveqd 5298 |
. . . . . . . 8
|
| 16 | 15 | imaeq1d 5465 |
. . . . . . 7
|
| 17 | 16, 12 | ineq12d 3815 |
. . . . . 6
|
| 18 | 17, 9 | eleq12d 2695 |
. . . . 5
|
| 19 | 14, 18 | rabeqbidv 3195 |
. . . 4
|
| 20 | df-qtop 16167 |
. . . 4
| |
| 21 | 19, 20 | ovmpt2ga 6790 |
. . 3
|
| 22 | 7, 21 | mpd3an3 1425 |
. 2
|
| 23 | 1, 2, 22 | syl2an 494 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-qtop 16167 |
| This theorem is referenced by: qtopval2 21499 qtopres 21501 imastopn 21523 |
| Copyright terms: Public domain | W3C validator |