| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-log | Structured version Visualization version Unicode version | ||
| Description: Define the natural logarithm function on complex numbers. It is defined as the principal value, that is, the inverse of the exponential whose imaginary part lies in the interval (-pi, pi]. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Paul Chapman, 21-Apr-2008.) |
| Ref | Expression |
|---|---|
| df-log |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clog 24301 |
. 2
| |
| 2 | ce 14792 |
. . . 4
| |
| 3 | cim 13838 |
. . . . . 6
| |
| 4 | 3 | ccnv 5113 |
. . . . 5
|
| 5 | cpi 14797 |
. . . . . . 7
| |
| 6 | 5 | cneg 10267 |
. . . . . 6
|
| 7 | cioc 12176 |
. . . . . 6
| |
| 8 | 6, 5, 7 | co 6650 |
. . . . 5
|
| 9 | 4, 8 | cima 5117 |
. . . 4
|
| 10 | 2, 9 | cres 5116 |
. . 3
|
| 11 | 10 | ccnv 5113 |
. 2
|
| 12 | 1, 11 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: logrn 24305 dflog2 24307 dvlog 24397 efopnlem2 24403 |
| Copyright terms: Public domain | W3C validator |