MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopnlem2 Structured version   Visualization version   Unicode version

Theorem efopnlem2 24403
Description: Lemma for efopn 24404. (Contributed by Mario Carneiro, 2-May-2015.)
Hypothesis
Ref Expression
efopn.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
efopnlem2  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J
)

Proof of Theorem efopnlem2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 logf1o 24311 . . . . . . . 8  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
2 f1orn 6147 . . . . . . . . 9  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log 
<->  ( log  Fn  ( CC  \  { 0 } )  /\  Fun  `' log ) )
32simprbi 480 . . . . . . . 8  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  Fun  `' log )
4 funcnvres 5967 . . . . . . . 8  |-  ( Fun  `' log  ->  `' ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) )  =  ( `' log  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) ) )
51, 3, 4mp2b 10 . . . . . . 7  |-  `' ( log  |`  ( CC  \  ( -oo (,] 0
) ) )  =  ( `' log  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) )
6 df-log 24303 . . . . . . . . . 10  |-  log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
76cnveqi 5297 . . . . . . . . 9  |-  `' log  =  `' `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
8 relres 5426 . . . . . . . . . 10  |-  Rel  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
9 dfrel2 5583 . . . . . . . . . 10  |-  ( Rel  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  <->  `' `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  =  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) ) )
108, 9mpbi 220 . . . . . . . . 9  |-  `' `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  =  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
117, 10eqtri 2644 . . . . . . . 8  |-  `' log  =  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
1211reseq1i 5392 . . . . . . 7  |-  ( `' log  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )
13 imassrn 5477 . . . . . . . . 9  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  C_  ran  log
14 logrn 24305 . . . . . . . . 9  |-  ran  log  =  ( `' Im " ( -u pi (,] pi ) )
1513, 14sseqtri 3637 . . . . . . . 8  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  C_  ( `' Im " ( -u pi (,] pi ) )
16 resabs1 5427 . . . . . . . 8  |-  ( ( log " ( CC 
\  ( -oo (,] 0 ) ) ) 
C_  ( `' Im " ( -u pi (,] pi ) )  ->  (
( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( exp  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) ) )
1715, 16ax-mp 5 . . . . . . 7  |-  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )  =  ( exp  |`  ( log " ( CC  \  ( -oo (,] 0 ) ) ) )
185, 12, 173eqtri 2648 . . . . . 6  |-  `' ( log  |`  ( CC  \  ( -oo (,] 0
) ) )  =  ( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) )
1918imaeq1i 5463 . . . . 5  |-  ( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )
" ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  =  ( ( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) ) "
( 0 ( ball `  ( abs  o.  -  ) ) R ) )
20 cnxmet 22576 . . . . . . . . . . . . 13  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2120a1i 11 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
22 0cnd 10033 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  0  e.  CC )
23 rpxr 11840 . . . . . . . . . . . . 13  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2423adantr 481 . . . . . . . . . . . 12  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  R  e.  RR* )
25 blssm 22223 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  CC )
2621, 22, 24, 25syl3anc 1326 . . . . . . . . . . 11  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  CC )
2726sselda 3603 . . . . . . . . . 10  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  ->  x  e.  CC )
2827imcld 13935 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( Im `  x
)  e.  RR )
29 efopnlem1 24402 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( abs `  (
Im `  x )
)  <  pi )
30 pire 24210 . . . . . . . . . . . . . 14  |-  pi  e.  RR
31 abslt 14054 . . . . . . . . . . . . . 14  |-  ( ( ( Im `  x
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  (
Im `  x )
)  <  pi  <->  ( -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <  pi ) ) )
3228, 30, 31sylancl 694 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( ( abs `  (
Im `  x )
)  <  pi  <->  ( -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <  pi ) ) )
3329, 32mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( -u pi  <  (
Im `  x )  /\  ( Im `  x
)  <  pi )
)
3433simpld 475 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  ->  -u pi  <  ( Im
`  x ) )
3533simprd 479 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( Im `  x
)  <  pi )
3630renegcli 10342 . . . . . . . . . . . . 13  |-  -u pi  e.  RR
3736rexri 10097 . . . . . . . . . . . 12  |-  -u pi  e.  RR*
3830rexri 10097 . . . . . . . . . . . 12  |-  pi  e.  RR*
39 elioo2 12216 . . . . . . . . . . . 12  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( Im `  x )  e.  (
-u pi (,) pi ) 
<->  ( ( Im `  x )  e.  RR  /\  -u pi  <  ( Im
`  x )  /\  ( Im `  x )  <  pi ) ) )
4037, 38, 39mp2an 708 . . . . . . . . . . 11  |-  ( ( Im `  x )  e.  ( -u pi (,) pi )  <->  ( (
Im `  x )  e.  RR  /\  -u pi  <  ( Im `  x
)  /\  ( Im `  x )  <  pi ) )
4128, 34, 35, 40syl3anbrc 1246 . . . . . . . . . 10  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  -> 
( Im `  x
)  e.  ( -u pi (,) pi ) )
42 imf 13853 . . . . . . . . . . 11  |-  Im : CC
--> RR
43 ffn 6045 . . . . . . . . . . 11  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
44 elpreima 6337 . . . . . . . . . . 11  |-  ( Im  Fn  CC  ->  (
x  e.  ( `' Im " ( -u pi (,) pi ) )  <-> 
( x  e.  CC  /\  ( Im `  x
)  e.  ( -u pi (,) pi ) ) ) )
4542, 43, 44mp2b 10 . . . . . . . . . 10  |-  ( x  e.  ( `' Im " ( -u pi (,) pi ) )  <->  ( x  e.  CC  /\  ( Im
`  x )  e.  ( -u pi (,) pi ) ) )
4627, 41, 45sylanbrc 698 . . . . . . . . 9  |-  ( ( ( R  e.  RR+  /\  R  <  pi )  /\  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  ->  x  e.  ( `' Im " ( -u pi (,) pi ) ) )
4746ex 450 . . . . . . . 8  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) R )  ->  x  e.  ( `' Im "
( -u pi (,) pi ) ) ) )
4847ssrdv 3609 . . . . . . 7  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  ( `' Im " ( -u pi (,) pi ) ) )
49 df-ima 5127 . . . . . . . 8  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  =  ran  ( log  |`  ( CC  \  ( -oo (,] 0
) ) )
50 eqid 2622 . . . . . . . . . 10  |-  ( CC 
\  ( -oo (,] 0 ) )  =  ( CC  \  ( -oo (,] 0 ) )
5150logf1o2 24396 . . . . . . . . 9  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) : ( CC 
\  ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u pi (,) pi ) )
52 f1ofo 6144 . . . . . . . . 9  |-  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) : ( CC  \  ( -oo (,] 0 ) ) -1-1-onto-> ( `' Im " ( -u pi (,) pi ) )  ->  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) : ( CC  \ 
( -oo (,] 0 ) ) -onto-> ( `' Im " ( -u pi (,) pi ) ) )
53 forn 6118 . . . . . . . . 9  |-  ( ( log  |`  ( CC  \  ( -oo (,] 0
) ) ) : ( CC  \  ( -oo (,] 0 ) )
-onto-> ( `' Im "
( -u pi (,) pi ) )  ->  ran  ( log  |`  ( CC  \  ( -oo (,] 0
) ) )  =  ( `' Im "
( -u pi (,) pi ) ) )
5451, 52, 53mp2b 10 . . . . . . . 8  |-  ran  ( log  |`  ( CC  \ 
( -oo (,] 0 ) ) )  =  ( `' Im " ( -u pi (,) pi ) )
5549, 54eqtri 2644 . . . . . . 7  |-  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  =  ( `' Im " ( -u pi (,) pi ) )
5648, 55syl6sseqr 3652 . . . . . 6  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  C_  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) )
57 resima2 5432 . . . . . 6  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) R )  C_  ( log " ( CC  \ 
( -oo (,] 0 ) ) )  ->  (
( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) ) "
( 0 ( ball `  ( abs  o.  -  ) ) R ) )  =  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) ) )
5856, 57syl 17 . . . . 5  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
( exp  |`  ( log " ( CC  \ 
( -oo (,] 0 ) ) ) ) "
( 0 ( ball `  ( abs  o.  -  ) ) R ) )  =  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) ) )
5919, 58syl5eq 2668 . . . 4  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )
" ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  =  ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) R ) ) )
6050logcn 24393 . . . . . 6  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )
61 difss 3737 . . . . . . 7  |-  ( CC 
\  ( -oo (,] 0 ) )  C_  CC
62 ssid 3624 . . . . . . 7  |-  CC  C_  CC
63 efopn.j . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
64 eqid 2622 . . . . . . . 8  |-  ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  =  ( Jt  ( CC 
\  ( -oo (,] 0 ) ) )
6563cnfldtop 22587 . . . . . . . . . 10  |-  J  e. 
Top
6663cnfldtopon 22586 . . . . . . . . . . . 12  |-  J  e.  (TopOn `  CC )
6766toponunii 20721 . . . . . . . . . . 11  |-  CC  =  U. J
6867restid 16094 . . . . . . . . . 10  |-  ( J  e.  Top  ->  ( Jt  CC )  =  J
)
6965, 68ax-mp 5 . . . . . . . . 9  |-  ( Jt  CC )  =  J
7069eqcomi 2631 . . . . . . . 8  |-  J  =  ( Jt  CC )
7163, 64, 70cncfcn 22712 . . . . . . 7  |-  ( ( ( CC  \  ( -oo (,] 0 ) ) 
C_  CC  /\  CC  C_  CC )  ->  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J ) )
7261, 62, 71mp2an 708 . . . . . 6  |-  ( ( CC  \  ( -oo (,] 0 ) ) -cn-> CC )  =  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J )
7360, 72eleqtri 2699 . . . . 5  |-  ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J )
7463cnfldtopn 22585 . . . . . . 7  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
7574blopn 22305 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  e.  J
)
7621, 22, 24, 75syl3anc 1326 . . . . 5  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
0 ( ball `  ( abs  o.  -  ) ) R )  e.  J
)
77 cnima 21069 . . . . 5  |-  ( ( ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )  e.  ( ( Jt  ( CC  \  ( -oo (,] 0 ) ) )  Cn  J )  /\  ( 0 ( ball `  ( abs  o.  -  ) ) R )  e.  J )  -> 
( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) ) " ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  ( Jt  ( CC  \ 
( -oo (,] 0 ) ) ) )
7873, 76, 77sylancr 695 . . . 4  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( `' ( log  |`  ( CC  \  ( -oo (,] 0 ) ) )
" ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  ( Jt  ( CC  \  ( -oo (,] 0 ) ) ) )
7959, 78eqeltrrd 2702 . . 3  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  ( Jt  ( CC  \  ( -oo (,] 0 ) ) ) )
8050logdmopn 24395 . . . . 5  |-  ( CC 
\  ( -oo (,] 0 ) )  e.  ( TopOpen ` fld )
8180, 63eleqtrri 2700 . . . 4  |-  ( CC 
\  ( -oo (,] 0 ) )  e.  J
82 restopn2 20981 . . . 4  |-  ( ( J  e.  Top  /\  ( CC  \  ( -oo (,] 0 ) )  e.  J )  -> 
( ( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  ( Jt  ( CC  \ 
( -oo (,] 0 ) ) )  <->  ( ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J  /\  ( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  C_  ( CC  \  ( -oo (,] 0 ) ) ) ) )
8365, 81, 82mp2an 708 . . 3  |-  ( ( exp " ( 0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  ( Jt  ( CC  \ 
( -oo (,] 0 ) ) )  <->  ( ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J  /\  ( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  C_  ( CC  \  ( -oo (,] 0 ) ) ) )
8479, 83sylib 208 . 2  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  (
( exp " (
0 ( ball `  ( abs  o.  -  ) ) R ) )  e.  J  /\  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  C_  ( CC  \  ( -oo (,] 0 ) ) ) )
8584simpld 475 1  |-  ( ( R  e.  RR+  /\  R  <  pi )  ->  ( exp " ( 0 (
ball `  ( abs  o. 
-  ) ) R ) )  e.  J
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   -oocmnf 10072   RR*cxr 10073    < clt 10074    - cmin 10266   -ucneg 10267   RR+crp 11832   (,)cioo 12175   (,]cioc 12176   Imcim 13838   abscabs 13974   expce 14792   picpi 14797   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   ballcbl 19733  ℂfldccnfld 19746   Topctop 20698    Cn ccn 21028   -cn->ccncf 22679   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  efopn  24404
  Copyright terms: Public domain W3C validator