MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog Structured version   Visualization version   Unicode version

Theorem dvlog 24397
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypothesis
Ref Expression
logcn.d  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
Assertion
Ref Expression
dvlog  |-  ( CC 
_D  ( log  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  x ) )
Distinct variable group:    x, D

Proof of Theorem dvlog
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21cnfldtop 22587 . . . . . 6  |-  ( TopOpen ` fld )  e.  Top
31cnfldtopon 22586 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
43toponunii 20721 . . . . . . 7  |-  CC  =  U. ( TopOpen ` fld )
54restid 16094 . . . . . 6  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
62, 5ax-mp 5 . . . . 5  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
76eqcomi 2631 . . . 4  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
8 cnelprrecn 10029 . . . . 5  |-  CC  e.  { RR ,  CC }
98a1i 11 . . . 4  |-  ( T. 
->  CC  e.  { RR ,  CC } )
10 logcn.d . . . . . 6  |-  D  =  ( CC  \  ( -oo (,] 0 ) )
1110logdmopn 24395 . . . . 5  |-  D  e.  ( TopOpen ` fld )
1211a1i 11 . . . 4  |-  ( T. 
->  D  e.  ( TopOpen
` fld
) )
13 logf1o 24311 . . . . . . . . 9  |-  log :
( CC  \  {
0 } ) -1-1-onto-> ran  log
14 f1of1 6136 . . . . . . . . 9  |-  ( log
: ( CC  \  { 0 } ) -1-1-onto-> ran 
log  ->  log : ( CC 
\  { 0 } ) -1-1-> ran  log )
1513, 14ax-mp 5 . . . . . . . 8  |-  log :
( CC  \  {
0 } ) -1-1-> ran  log
1610logdmss 24388 . . . . . . . 8  |-  D  C_  ( CC  \  { 0 } )
17 f1ores 6151 . . . . . . . 8  |-  ( ( log : ( CC 
\  { 0 } ) -1-1-> ran  log  /\  D  C_  ( CC  \  { 0 } ) )  -> 
( log  |`  D ) : D -1-1-onto-> ( log " D
) )
1815, 16, 17mp2an 708 . . . . . . 7  |-  ( log  |`  D ) : D -1-1-onto-> ( log " D )
19 f1ocnv 6149 . . . . . . 7  |-  ( ( log  |`  D ) : D -1-1-onto-> ( log " D
)  ->  `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D )
2018, 19ax-mp 5 . . . . . 6  |-  `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D
21 df-log 24303 . . . . . . . . . . 11  |-  log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
2221reseq1i 5392 . . . . . . . . . 10  |-  ( log  |`  D )  =  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )
2322cnveqi 5297 . . . . . . . . 9  |-  `' ( log  |`  D )  =  `' ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )
24 eff 14812 . . . . . . . . . . 11  |-  exp : CC
--> CC
25 cnvimass 5485 . . . . . . . . . . . 12  |-  ( `' Im " ( -u pi (,] pi ) ) 
C_  dom  Im
26 imf 13853 . . . . . . . . . . . . 13  |-  Im : CC
--> RR
2726fdmi 6052 . . . . . . . . . . . 12  |-  dom  Im  =  CC
2825, 27sseqtri 3637 . . . . . . . . . . 11  |-  ( `' Im " ( -u pi (,] pi ) ) 
C_  CC
29 fssres 6070 . . . . . . . . . . 11  |-  ( ( exp : CC --> CC  /\  ( `' Im " ( -u pi (,] pi ) ) 
C_  CC )  -> 
( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) : ( `' Im " ( -u pi (,] pi ) ) --> CC )
3024, 28, 29mp2an 708 . . . . . . . . . 10  |-  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) ) : ( `' Im "
( -u pi (,] pi ) ) --> CC
31 ffun 6048 . . . . . . . . . 10  |-  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) : ( `' Im " ( -u pi (,] pi ) ) --> CC  ->  Fun  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) )
32 funcnvres2 5969 . . . . . . . . . 10  |-  ( Fun  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  ->  `' ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )  =  ( ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) ) )
3330, 31, 32mp2b 10 . . . . . . . . 9  |-  `' ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  D )  =  ( ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) )
34 cnvimass 5485 . . . . . . . . . . 11  |-  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) 
C_  dom  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )
3530fdmi 6052 . . . . . . . . . . 11  |-  dom  ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  =  ( `' Im "
( -u pi (,] pi ) )
3634, 35sseqtri 3637 . . . . . . . . . 10  |-  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) 
C_  ( `' Im " ( -u pi (,] pi ) )
37 resabs1 5427 . . . . . . . . . 10  |-  ( ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) 
C_  ( `' Im " ( -u pi (,] pi ) )  ->  (
( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
" D ) )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) ) )
3836, 37ax-mp 5 . . . . . . . . 9  |-  ( ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )  |`  ( `' ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) ) " D ) )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) )
3923, 33, 383eqtri 2648 . . . . . . . 8  |-  `' ( log  |`  D )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D ) )
4021imaeq1i 5463 . . . . . . . . 9  |-  ( log " D )  =  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) ) " D )
4140reseq2i 5393 . . . . . . . 8  |-  ( exp  |`  ( log " D
) )  =  ( exp  |`  ( `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
" D ) )
4239, 41eqtr4i 2647 . . . . . . 7  |-  `' ( log  |`  D )  =  ( exp  |`  ( log " D ) )
43 f1oeq1 6127 . . . . . . 7  |-  ( `' ( log  |`  D )  =  ( exp  |`  ( log " D ) )  ->  ( `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D 
<->  ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D ) )
4442, 43ax-mp 5 . . . . . 6  |-  ( `' ( log  |`  D ) : ( log " D
)
-1-1-onto-> D 
<->  ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D )
4520, 44mpbi 220 . . . . 5  |-  ( exp  |`  ( log " D
) ) : ( log " D ) -1-1-onto-> D
4645a1i 11 . . . 4  |-  ( T. 
->  ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D )
4742cnveqi 5297 . . . . . 6  |-  `' `' ( log  |`  D )  =  `' ( exp  |`  ( log " D ) )
48 relres 5426 . . . . . . 7  |-  Rel  ( log  |`  D )
49 dfrel2 5583 . . . . . . 7  |-  ( Rel  ( log  |`  D )  <->  `' `' ( log  |`  D )  =  ( log  |`  D ) )
5048, 49mpbi 220 . . . . . 6  |-  `' `' ( log  |`  D )  =  ( log  |`  D )
5147, 50eqtr3i 2646 . . . . 5  |-  `' ( exp  |`  ( log " D ) )  =  ( log  |`  D )
52 f1of 6137 . . . . . . 7  |-  ( ( log  |`  D ) : D -1-1-onto-> ( log " D
)  ->  ( log  |`  D ) : D --> ( log " D ) )
5318, 52mp1i 13 . . . . . 6  |-  ( T. 
->  ( log  |`  D ) : D --> ( log " D ) )
54 imassrn 5477 . . . . . . . 8  |-  ( log " D )  C_  ran  log
55 logrncn 24309 . . . . . . . . 9  |-  ( x  e.  ran  log  ->  x  e.  CC )
5655ssriv 3607 . . . . . . . 8  |-  ran  log  C_  CC
5754, 56sstri 3612 . . . . . . 7  |-  ( log " D )  C_  CC
5810logcn 24393 . . . . . . 7  |-  ( log  |`  D )  e.  ( D -cn-> CC )
59 cncffvrn 22701 . . . . . . 7  |-  ( ( ( log " D
)  C_  CC  /\  ( log  |`  D )  e.  ( D -cn-> CC ) )  ->  ( ( log  |`  D )  e.  ( D -cn-> ( log " D ) )  <->  ( log  |`  D ) : D --> ( log " D ) ) )
6057, 58, 59mp2an 708 . . . . . 6  |-  ( ( log  |`  D )  e.  ( D -cn-> ( log " D ) )  <->  ( log  |`  D ) : D --> ( log " D ) )
6153, 60sylibr 224 . . . . 5  |-  ( T. 
->  ( log  |`  D )  e.  ( D -cn-> ( log " D ) ) )
6251, 61syl5eqel 2705 . . . 4  |-  ( T. 
->  `' ( exp  |`  ( log " D ) )  e.  ( D -cn-> ( log " D ) ) )
63 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
641, 7dvres 23675 . . . . . . . . 9  |-  ( ( ( CC  C_  CC  /\ 
exp : CC --> CC )  /\  ( CC  C_  CC  /\  ( log " D
)  C_  CC )
)  ->  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) ) )
6563, 24, 63, 57, 64mp4an 709 . . . . . . . 8  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  =  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) )
66 dvef 23743 . . . . . . . . 9  |-  ( CC 
_D  exp )  =  exp
6710dvloglem 24394 . . . . . . . . . 10  |-  ( log " D )  e.  (
TopOpen ` fld )
68 isopn3i 20886 . . . . . . . . . 10  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( log " D
)  e.  ( TopOpen ` fld )
)  ->  ( ( int `  ( TopOpen ` fld ) ) `  ( log " D ) )  =  ( log " D
) )
692, 67, 68mp2an 708 . . . . . . . . 9  |-  ( ( int `  ( TopOpen ` fld )
) `  ( log " D ) )  =  ( log " D
)
7066, 69reseq12i 5394 . . . . . . . 8  |-  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) )  =  ( exp  |`  ( log " D
) )
7165, 70eqtri 2644 . . . . . . 7  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  =  ( exp  |`  ( log " D
) )
7271dmeqi 5325 . . . . . 6  |-  dom  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  dom  ( exp  |`  ( log " D
) )
73 dmres 5419 . . . . . 6  |-  dom  ( exp  |`  ( log " D
) )  =  ( ( log " D
)  i^i  dom  exp )
7424fdmi 6052 . . . . . . . 8  |-  dom  exp  =  CC
7557, 74sseqtr4i 3638 . . . . . . 7  |-  ( log " D )  C_  dom  exp
76 df-ss 3588 . . . . . . 7  |-  ( ( log " D ) 
C_  dom  exp  <->  ( ( log " D )  i^i 
dom  exp )  =  ( log " D ) )
7775, 76mpbi 220 . . . . . 6  |-  ( ( log " D )  i^i  dom  exp )  =  ( log " D
)
7872, 73, 773eqtri 2648 . . . . 5  |-  dom  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  ( log " D )
7978a1i 11 . . . 4  |-  ( T. 
->  dom  ( CC  _D  ( exp  |`  ( log " D ) ) )  =  ( log " D
) )
80 neirr 2803 . . . . . 6  |-  -.  0  =/=  0
81 resss 5422 . . . . . . . . . . . . 13  |-  ( ( CC  _D  exp )  |`  ( ( int `  ( TopOpen
` fld
) ) `  ( log " D ) ) )  C_  ( CC  _D  exp )
8265, 81eqsstri 3635 . . . . . . . . . . . 12  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  C_  ( CC  _D  exp )
8382, 66sseqtri 3637 . . . . . . . . . . 11  |-  ( CC 
_D  ( exp  |`  ( log " D ) ) )  C_  exp
84 rnss 5354 . . . . . . . . . . 11  |-  ( ( CC  _D  ( exp  |`  ( log " D
) ) )  C_  exp  ->  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )  C_  ran  exp )
8583, 84ax-mp 5 . . . . . . . . . 10  |-  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )  C_  ran  exp
86 eff2 14829 . . . . . . . . . . 11  |-  exp : CC
--> ( CC  \  {
0 } )
87 frn 6053 . . . . . . . . . . 11  |-  ( exp
: CC --> ( CC 
\  { 0 } )  ->  ran  exp  C_  ( CC  \  { 0 } ) )
8886, 87ax-mp 5 . . . . . . . . . 10  |-  ran  exp  C_  ( CC  \  {
0 } )
8985, 88sstri 3612 . . . . . . . . 9  |-  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )  C_  ( CC  \  { 0 } )
9089sseli 3599 . . . . . . . 8  |-  ( 0  e.  ran  ( CC 
_D  ( exp  |`  ( log " D ) ) )  ->  0  e.  ( CC  \  { 0 } ) )
91 eldifsn 4317 . . . . . . . 8  |-  ( 0  e.  ( CC  \  { 0 } )  <-> 
( 0  e.  CC  /\  0  =/=  0 ) )
9290, 91sylib 208 . . . . . . 7  |-  ( 0  e.  ran  ( CC 
_D  ( exp  |`  ( log " D ) ) )  ->  ( 0  e.  CC  /\  0  =/=  0 ) )
9392simprd 479 . . . . . 6  |-  ( 0  e.  ran  ( CC 
_D  ( exp  |`  ( log " D ) ) )  ->  0  =/=  0 )
9480, 93mto 188 . . . . 5  |-  -.  0  e.  ran  ( CC  _D  ( exp  |`  ( log " D ) ) )
9594a1i 11 . . . 4  |-  ( T. 
->  -.  0  e.  ran  ( CC  _D  ( exp  |`  ( log " D
) ) ) )
961, 7, 9, 12, 46, 62, 79, 95dvcnv 23740 . . 3  |-  ( T. 
->  ( CC  _D  `' ( exp  |`  ( log " D ) ) )  =  ( x  e.  D  |->  ( 1  / 
( ( CC  _D  ( exp  |`  ( log " D ) ) ) `
 ( `' ( exp  |`  ( log " D ) ) `  x ) ) ) ) )
9796trud 1493 . 2  |-  ( CC 
_D  `' ( exp  |`  ( log " D
) ) )  =  ( x  e.  D  |->  ( 1  /  (
( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) ) ) )
9851oveq2i 6661 . 2  |-  ( CC 
_D  `' ( exp  |`  ( log " D
) ) )  =  ( CC  _D  ( log  |`  D ) )
9971fveq1i 6192 . . . . 5  |-  ( ( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  ( ( exp  |`  ( log " D
) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )
100 f1ocnvfv2 6533 . . . . . 6  |-  ( ( ( exp  |`  ( log " D ) ) : ( log " D
)
-1-1-onto-> D  /\  x  e.  D
)  ->  ( ( exp  |`  ( log " D
) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  x )
10145, 100mpan 706 . . . . 5  |-  ( x  e.  D  ->  (
( exp  |`  ( log " D ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  x )
10299, 101syl5eq 2668 . . . 4  |-  ( x  e.  D  ->  (
( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) )  =  x )
103102oveq2d 6666 . . 3  |-  ( x  e.  D  ->  (
1  /  ( ( CC  _D  ( exp  |`  ( log " D
) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) ) )  =  ( 1  /  x ) )
104103mpteq2ia 4740 . 2  |-  ( x  e.  D  |->  ( 1  /  ( ( CC 
_D  ( exp  |`  ( log " D ) ) ) `  ( `' ( exp  |`  ( log " D ) ) `
 x ) ) ) )  =  ( x  e.  D  |->  ( 1  /  x ) )
10597, 98, 1043eqtr3i 2652 1  |-  ( CC 
_D  ( log  |`  D ) )  =  ( x  e.  D  |->  ( 1  /  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   {cpr 4179    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   -oocmnf 10072   -ucneg 10267    / cdiv 10684   (,]cioc 12176   Imcim 13838   expce 14792   picpi 14797   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698   intcnt 20821   -cn->ccncf 22679    _D cdv 23627   logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  dvlog2  24399  dvcncxp1  24484  dvatan  24662  lgamgulmlem2  24756  dvasin  33496
  Copyright terms: Public domain W3C validator