| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-mbf | Structured version Visualization version Unicode version | ||
| Description: Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl 23294) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-mbf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmbf 23383 |
. 2
| |
| 2 | cre 13837 |
. . . . . . . . 9
| |
| 3 | vf |
. . . . . . . . . 10
| |
| 4 | 3 | cv 1482 |
. . . . . . . . 9
|
| 5 | 2, 4 | ccom 5118 |
. . . . . . . 8
|
| 6 | 5 | ccnv 5113 |
. . . . . . 7
|
| 7 | vx |
. . . . . . . 8
| |
| 8 | 7 | cv 1482 |
. . . . . . 7
|
| 9 | 6, 8 | cima 5117 |
. . . . . 6
|
| 10 | cvol 23232 |
. . . . . . 7
| |
| 11 | 10 | cdm 5114 |
. . . . . 6
|
| 12 | 9, 11 | wcel 1990 |
. . . . 5
|
| 13 | cim 13838 |
. . . . . . . . 9
| |
| 14 | 13, 4 | ccom 5118 |
. . . . . . . 8
|
| 15 | 14 | ccnv 5113 |
. . . . . . 7
|
| 16 | 15, 8 | cima 5117 |
. . . . . 6
|
| 17 | 16, 11 | wcel 1990 |
. . . . 5
|
| 18 | 12, 17 | wa 384 |
. . . 4
|
| 19 | cioo 12175 |
. . . . 5
| |
| 20 | 19 | crn 5115 |
. . . 4
|
| 21 | 18, 7, 20 | wral 2912 |
. . 3
|
| 22 | cc 9934 |
. . . 4
| |
| 23 | cr 9935 |
. . . 4
| |
| 24 | cpm 7858 |
. . . 4
| |
| 25 | 22, 23, 24 | co 6650 |
. . 3
|
| 26 | 21, 3, 25 | crab 2916 |
. 2
|
| 27 | 1, 26 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: ismbf1 23393 |
| Copyright terms: Public domain | W3C validator |