MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf1 Structured version   Visualization version   Unicode version

Theorem ismbf1 23393
Description: The predicate " F is a measurable function". This is more naturally stated for functions on the reals, see ismbf 23397 and ismbfcn 23398 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf1  |-  ( F  e. MblFn 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
Distinct variable group:    x, F

Proof of Theorem ismbf1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 coeq2 5280 . . . . . . 7  |-  ( f  =  F  ->  (
Re  o.  f )  =  ( Re  o.  F ) )
21cnveqd 5298 . . . . . 6  |-  ( f  =  F  ->  `' ( Re  o.  f
)  =  `' ( Re  o.  F ) )
32imaeq1d 5465 . . . . 5  |-  ( f  =  F  ->  ( `' ( Re  o.  f ) " x
)  =  ( `' ( Re  o.  F
) " x ) )
43eleq1d 2686 . . . 4  |-  ( f  =  F  ->  (
( `' ( Re  o.  f ) "
x )  e.  dom  vol  <->  ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
5 coeq2 5280 . . . . . . 7  |-  ( f  =  F  ->  (
Im  o.  f )  =  ( Im  o.  F ) )
65cnveqd 5298 . . . . . 6  |-  ( f  =  F  ->  `' ( Im  o.  f
)  =  `' ( Im  o.  F ) )
76imaeq1d 5465 . . . . 5  |-  ( f  =  F  ->  ( `' ( Im  o.  f ) " x
)  =  ( `' ( Im  o.  F
) " x ) )
87eleq1d 2686 . . . 4  |-  ( f  =  F  ->  (
( `' ( Im  o.  f ) "
x )  e.  dom  vol  <->  ( `' ( Im  o.  F ) " x
)  e.  dom  vol ) )
94, 8anbi12d 747 . . 3  |-  ( f  =  F  ->  (
( ( `' ( Re  o.  f )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  f
) " x )  e.  dom  vol )  <->  ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" x )  e. 
dom  vol ) ) )
109ralbidv 2986 . 2  |-  ( f  =  F  ->  ( A. x  e.  ran  (,) ( ( `' ( Re  o.  f )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  f
) " x )  e.  dom  vol )  <->  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
11 df-mbf 23388 . 2  |- MblFn  =  {
f  e.  ( CC 
^pm  RR )  |  A. x  e.  ran  (,) (
( `' ( Re  o.  f ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  f )
" x )  e. 
dom  vol ) }
1210, 11elrab2 3366 1  |-  ( F  e. MblFn 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   (,)cioo 12175   Recre 13837   Imcim 13838   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-mbf 23388
This theorem is referenced by:  mbff  23394  mbfdm  23395  ismbf  23397  ismbfcn  23398  mbfconst  23402  mbfres  23411  cncombf  23425  cnmbf  23426  mbfdmssre  40217
  Copyright terms: Public domain W3C validator