MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl Structured version   Visualization version   Unicode version

Theorem ismbl 23294
Description: The predicate " A is Lebesgue-measurable". A set is measurable if it splits every other set  x in a "nice" way, that is, if the measure of the pieces  x  i^i  A and  x  \  A sum up to the measure of 
x (assuming that the measure of 
x is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ismbl  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( vol* `  x
)  =  ( ( vol* `  (
x  i^i  A )
)  +  ( vol* `  ( x  \  A ) ) ) ) ) )
Distinct variable group:    x, A

Proof of Theorem ismbl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ineq2 3808 . . . . . . 7  |-  ( y  =  A  ->  (
x  i^i  y )  =  ( x  i^i 
A ) )
21fveq2d 6195 . . . . . 6  |-  ( y  =  A  ->  ( vol* `  ( x  i^i  y ) )  =  ( vol* `  ( x  i^i  A
) ) )
3 difeq2 3722 . . . . . . 7  |-  ( y  =  A  ->  (
x  \  y )  =  ( x  \  A ) )
43fveq2d 6195 . . . . . 6  |-  ( y  =  A  ->  ( vol* `  ( x 
\  y ) )  =  ( vol* `  ( x  \  A
) ) )
52, 4oveq12d 6668 . . . . 5  |-  ( y  =  A  ->  (
( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )
65eqeq2d 2632 . . . 4  |-  ( y  =  A  ->  (
( vol* `  x )  =  ( ( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) )  <->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A
) )  +  ( vol* `  (
x  \  A )
) ) ) )
76ralbidv 2986 . . 3  |-  ( y  =  A  ->  ( A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) )  <->  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) )
8 df-vol 23234 . . . . . 6  |-  vol  =  ( vol*  |`  { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y ) )  +  ( vol* `  ( x  \  y
) ) ) } )
98dmeqi 5325 . . . . 5  |-  dom  vol  =  dom  ( vol*  |` 
{ y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) ) } )
10 dmres 5419 . . . . 5  |-  dom  ( vol*  |`  { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) ) } )  =  ( { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y ) )  +  ( vol* `  ( x  \  y
) ) ) }  i^i  dom  vol* )
11 ovolf 23250 . . . . . . 7  |-  vol* : ~P RR --> ( 0 [,] +oo )
1211fdmi 6052 . . . . . 6  |-  dom  vol*  =  ~P RR
1312ineq2i 3811 . . . . 5  |-  ( { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y ) )  +  ( vol* `  ( x  \  y
) ) ) }  i^i  dom  vol* )  =  ( { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y ) )  +  ( vol* `  ( x  \  y
) ) ) }  i^i  ~P RR )
149, 10, 133eqtri 2648 . . . 4  |-  dom  vol  =  ( { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y ) )  +  ( vol* `  ( x  \  y
) ) ) }  i^i  ~P RR )
15 dfrab2 3903 . . . 4  |-  { y  e.  ~P RR  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) ) }  =  ( { y  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y
) )  +  ( vol* `  (
x  \  y )
) ) }  i^i  ~P RR )
1614, 15eqtr4i 2647 . . 3  |-  dom  vol  =  { y  e.  ~P RR  |  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  y ) )  +  ( vol* `  ( x  \  y
) ) ) }
177, 16elrab2 3366 . 2  |-  ( A  e.  dom  vol  <->  ( A  e.  ~P RR  /\  A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) )
18 reex 10027 . . . 4  |-  RR  e.  _V
1918elpw2 4828 . . 3  |-  ( A  e.  ~P RR  <->  A  C_  RR )
20 ffn 6045 . . . . . . 7  |-  ( vol* : ~P RR --> ( 0 [,] +oo )  ->  vol*  Fn  ~P RR )
21 elpreima 6337 . . . . . . 7  |-  ( vol*  Fn  ~P RR  ->  ( x  e.  ( `' vol* " RR ) 
<->  ( x  e.  ~P RR  /\  ( vol* `  x )  e.  RR ) ) )
2211, 20, 21mp2b 10 . . . . . 6  |-  ( x  e.  ( `' vol* " RR )  <->  ( x  e.  ~P RR  /\  ( vol* `  x )  e.  RR ) )
2322imbi1i 339 . . . . 5  |-  ( ( x  e.  ( `' vol* " RR )  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )  <->  ( ( x  e.  ~P RR  /\  ( vol* `  x
)  e.  RR )  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) )
24 impexp 462 . . . . 5  |-  ( ( ( x  e.  ~P RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )  <->  ( x  e. 
~P RR  ->  (
( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) ) )
2523, 24bitri 264 . . . 4  |-  ( ( x  e.  ( `' vol* " RR )  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )  <->  ( x  e. 
~P RR  ->  (
( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) ) )
2625ralbii2 2978 . . 3  |-  ( A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) )  <->  A. x  e.  ~P  RR ( ( vol* `  x )  e.  RR  ->  ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) ) )
2719, 26anbi12i 733 . 2  |-  ( ( A  e.  ~P RR  /\ 
A. x  e.  ( `' vol* " RR ) ( vol* `  x )  =  ( ( vol* `  ( x  i^i  A ) )  +  ( vol* `  ( x  \  A ) ) ) )  <->  ( A  C_  RR  /\  A. x  e. 
~P  RR ( ( vol* `  x
)  e.  RR  ->  ( vol* `  x
)  =  ( ( vol* `  (
x  i^i  A )
)  +  ( vol* `  ( x  \  A ) ) ) ) ) )
2817, 27bitri 264 1  |-  ( A  e.  dom  vol  <->  ( A  C_  RR  /\  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( vol* `  x
)  =  ( ( vol* `  (
x  i^i  A )
)  +  ( vol* `  ( x  \  A ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   [,]cicc 12178   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-ovol 23233  df-vol 23234
This theorem is referenced by:  ismbl2  23295  mblss  23299  mblsplit  23300  cmmbl  23302  shftmbl  23306  voliunlem2  23319
  Copyright terms: Public domain W3C validator