| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nmhm | Structured version Visualization version GIF version | ||
| Description: Define a normed module homomorphism, also known as a bounded linear operator. This is a module homomorphism (a linear function) such that the operator norm is finite, or equivalently there is a constant 𝑐 such that... (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-nmhm | ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmhm 22511 | . 2 class NMHom | |
| 2 | vs | . . 3 setvar 𝑠 | |
| 3 | vt | . . 3 setvar 𝑡 | |
| 4 | cnlm 22385 | . . 3 class NrmMod | |
| 5 | 2 | cv 1482 | . . . . 5 class 𝑠 |
| 6 | 3 | cv 1482 | . . . . 5 class 𝑡 |
| 7 | clmhm 19019 | . . . . 5 class LMHom | |
| 8 | 5, 6, 7 | co 6650 | . . . 4 class (𝑠 LMHom 𝑡) |
| 9 | cnghm 22510 | . . . . 5 class NGHom | |
| 10 | 5, 6, 9 | co 6650 | . . . 4 class (𝑠 NGHom 𝑡) |
| 11 | 8, 10 | cin 3573 | . . 3 class ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)) |
| 12 | 2, 3, 4, 4, 11 | cmpt2 6652 | . 2 class (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
| 13 | 1, 12 | wceq 1483 | 1 wff NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmnmhm 22517 isnmhm 22550 |
| Copyright terms: Public domain | W3C validator |