| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-om1 | Structured version Visualization version Unicode version | ||
| Description: Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| df-om1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comi 22801 |
. 2
| |
| 2 | vj |
. . 3
| |
| 3 | vy |
. . 3
| |
| 4 | ctop 20698 |
. . 3
| |
| 5 | 2 | cv 1482 |
. . . 4
|
| 6 | 5 | cuni 4436 |
. . 3
|
| 7 | cnx 15854 |
. . . . . 6
| |
| 8 | cbs 15857 |
. . . . . 6
| |
| 9 | 7, 8 | cfv 5888 |
. . . . 5
|
| 10 | cc0 9936 |
. . . . . . . . 9
| |
| 11 | vf |
. . . . . . . . . 10
| |
| 12 | 11 | cv 1482 |
. . . . . . . . 9
|
| 13 | 10, 12 | cfv 5888 |
. . . . . . . 8
|
| 14 | 3 | cv 1482 |
. . . . . . . 8
|
| 15 | 13, 14 | wceq 1483 |
. . . . . . 7
|
| 16 | c1 9937 |
. . . . . . . . 9
| |
| 17 | 16, 12 | cfv 5888 |
. . . . . . . 8
|
| 18 | 17, 14 | wceq 1483 |
. . . . . . 7
|
| 19 | 15, 18 | wa 384 |
. . . . . 6
|
| 20 | cii 22678 |
. . . . . . 7
| |
| 21 | ccn 21028 |
. . . . . . 7
| |
| 22 | 20, 5, 21 | co 6650 |
. . . . . 6
|
| 23 | 19, 11, 22 | crab 2916 |
. . . . 5
|
| 24 | 9, 23 | cop 4183 |
. . . 4
|
| 25 | cplusg 15941 |
. . . . . 6
| |
| 26 | 7, 25 | cfv 5888 |
. . . . 5
|
| 27 | cpco 22800 |
. . . . . 6
| |
| 28 | 5, 27 | cfv 5888 |
. . . . 5
|
| 29 | 26, 28 | cop 4183 |
. . . 4
|
| 30 | cts 15947 |
. . . . . 6
| |
| 31 | 7, 30 | cfv 5888 |
. . . . 5
|
| 32 | cxko 21364 |
. . . . . 6
| |
| 33 | 5, 20, 32 | co 6650 |
. . . . 5
|
| 34 | 31, 33 | cop 4183 |
. . . 4
|
| 35 | 24, 29, 34 | ctp 4181 |
. . 3
|
| 36 | 2, 3, 4, 6, 35 | cmpt2 6652 |
. 2
|
| 37 | 1, 36 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: om1val 22830 |
| Copyright terms: Public domain | W3C validator |