Detailed syntax breakdown of Definition df-om1
| Step | Hyp | Ref
| Expression |
| 1 | | comi 22801 |
. 2
class
Ω1 |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | ctop 20698 |
. . 3
class
Top |
| 5 | 2 | cv 1482 |
. . . 4
class 𝑗 |
| 6 | 5 | cuni 4436 |
. . 3
class ∪ 𝑗 |
| 7 | | cnx 15854 |
. . . . . 6
class
ndx |
| 8 | | cbs 15857 |
. . . . . 6
class
Base |
| 9 | 7, 8 | cfv 5888 |
. . . . 5
class
(Base‘ndx) |
| 10 | | cc0 9936 |
. . . . . . . . 9
class
0 |
| 11 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 12 | 11 | cv 1482 |
. . . . . . . . 9
class 𝑓 |
| 13 | 10, 12 | cfv 5888 |
. . . . . . . 8
class (𝑓‘0) |
| 14 | 3 | cv 1482 |
. . . . . . . 8
class 𝑦 |
| 15 | 13, 14 | wceq 1483 |
. . . . . . 7
wff (𝑓‘0) = 𝑦 |
| 16 | | c1 9937 |
. . . . . . . . 9
class
1 |
| 17 | 16, 12 | cfv 5888 |
. . . . . . . 8
class (𝑓‘1) |
| 18 | 17, 14 | wceq 1483 |
. . . . . . 7
wff (𝑓‘1) = 𝑦 |
| 19 | 15, 18 | wa 384 |
. . . . . 6
wff ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦) |
| 20 | | cii 22678 |
. . . . . . 7
class
II |
| 21 | | ccn 21028 |
. . . . . . 7
class
Cn |
| 22 | 20, 5, 21 | co 6650 |
. . . . . 6
class (II Cn
𝑗) |
| 23 | 19, 11, 22 | crab 2916 |
. . . . 5
class {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)} |
| 24 | 9, 23 | cop 4183 |
. . . 4
class
〈(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉 |
| 25 | | cplusg 15941 |
. . . . . 6
class
+g |
| 26 | 7, 25 | cfv 5888 |
. . . . 5
class
(+g‘ndx) |
| 27 | | cpco 22800 |
. . . . . 6
class
*𝑝 |
| 28 | 5, 27 | cfv 5888 |
. . . . 5
class
(*𝑝‘𝑗) |
| 29 | 26, 28 | cop 4183 |
. . . 4
class
〈(+g‘ndx), (*𝑝‘𝑗)〉 |
| 30 | | cts 15947 |
. . . . . 6
class
TopSet |
| 31 | 7, 30 | cfv 5888 |
. . . . 5
class
(TopSet‘ndx) |
| 32 | | cxko 21364 |
. . . . . 6
class
^ko |
| 33 | 5, 20, 32 | co 6650 |
. . . . 5
class (𝑗 ^ko
II) |
| 34 | 31, 33 | cop 4183 |
. . . 4
class
〈(TopSet‘ndx), (𝑗 ^ko
II)〉 |
| 35 | 24, 29, 34 | ctp 4181 |
. . 3
class
{〈(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx),
(*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ^ko
II)〉} |
| 36 | 2, 3, 4, 6, 35 | cmpt2 6652 |
. 2
class (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦
{〈(Base‘ndx), {𝑓
∈ (II Cn 𝑗) ∣
((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx),
(*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ^ko
II)〉}) |
| 37 | 1, 36 | wceq 1483 |
1
wff
Ω1 = (𝑗
∈ Top, 𝑦 ∈ ∪ 𝑗
↦ {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx),
(*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ^ko
II)〉}) |