MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1val Structured version   Visualization version   Unicode version

Theorem om1val 22830
Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1val.o  |-  O  =  ( J  Om1  Y )
om1val.b  |-  ( ph  ->  B  =  { f  e.  ( II  Cn  J )  |  ( ( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) } )
om1val.p  |-  ( ph  ->  .+  =  ( *p
`  J ) )
om1val.k  |-  ( ph  ->  K  =  ( J  ^ko  II ) )
om1val.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
om1val.y  |-  ( ph  ->  Y  e.  X )
Assertion
Ref Expression
om1val  |-  ( ph  ->  O  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (TopSet ` 
ndx ) ,  K >. } )
Distinct variable groups:    f, J    ph, f    f, Y
Allowed substitution hints:    B( f)    .+ ( f)    K( f)    O( f)    X( f)

Proof of Theorem om1val
Dummy variables  y 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om1val.o . 2  |-  O  =  ( J  Om1  Y )
2 df-om1 22806 . . . 4  |-  Om1 
=  ( j  e. 
Top ,  y  e.  U. j  |->  { <. ( Base `  ndx ) ,  { f  e.  ( II  Cn  j )  |  ( ( f `
 0 )  =  y  /\  ( f `
 1 )  =  y ) } >. , 
<. ( +g  `  ndx ) ,  ( *p `  j ) >. ,  <. (TopSet `  ndx ) ,  ( j  ^ko  II ) >. } )
32a1i 11 . . 3  |-  ( ph  ->  Om1  =  ( j  e.  Top , 
y  e.  U. j  |->  { <. ( Base `  ndx ) ,  { f  e.  ( II  Cn  j
)  |  ( ( f `  0 )  =  y  /\  (
f `  1 )  =  y ) }
>. ,  <. ( +g  ` 
ndx ) ,  ( *p `  j )
>. ,  <. (TopSet `  ndx ) ,  ( j  ^ko  II ) >. } ) )
4 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
j  =  J )
54oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( II  Cn  j
)  =  ( II 
Cn  J ) )
6 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
y  =  Y )
76eqeq2d 2632 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( ( f ` 
0 )  =  y  <-> 
( f `  0
)  =  Y ) )
86eqeq2d 2632 . . . . . . . 8  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( ( f ` 
1 )  =  y  <-> 
( f `  1
)  =  Y ) )
97, 8anbi12d 747 . . . . . . 7  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( ( ( f `
 0 )  =  y  /\  ( f `
 1 )  =  y )  <->  ( (
f `  0 )  =  Y  /\  (
f `  1 )  =  Y ) ) )
105, 9rabeqbidv 3195 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  { f  e.  ( II  Cn  j )  |  ( ( f `
 0 )  =  y  /\  ( f `
 1 )  =  y ) }  =  { f  e.  ( II  Cn  J )  |  ( ( f `
 0 )  =  Y  /\  ( f `
 1 )  =  Y ) } )
11 om1val.b . . . . . . 7  |-  ( ph  ->  B  =  { f  e.  ( II  Cn  J )  |  ( ( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) } )
1211adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  B  =  { f  e.  ( II  Cn  J
)  |  ( ( f `  0 )  =  Y  /\  (
f `  1 )  =  Y ) } )
1310, 12eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  { f  e.  ( II  Cn  j )  |  ( ( f `
 0 )  =  y  /\  ( f `
 1 )  =  y ) }  =  B )
1413opeq2d 4409 . . . 4  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  <. ( Base `  ndx ) ,  { f  e.  ( II  Cn  j
)  |  ( ( f `  0 )  =  y  /\  (
f `  1 )  =  y ) }
>.  =  <. ( Base `  ndx ) ,  B >. )
154fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( *p `  j
)  =  ( *p
`  J ) )
16 om1val.p . . . . . . 7  |-  ( ph  ->  .+  =  ( *p
`  J ) )
1716adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  .+  =  ( *p `  J ) )
1815, 17eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( *p `  j
)  =  .+  )
1918opeq2d 4409 . . . 4  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  <. ( +g  `  ndx ) ,  ( *p `  j ) >.  =  <. ( +g  `  ndx ) ,  .+  >. )
204oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( j  ^ko  II )  =  ( J  ^ko  II ) )
21 om1val.k . . . . . . 7  |-  ( ph  ->  K  =  ( J  ^ko  II ) )
2221adantr 481 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  K  =  ( J  ^ko  II ) )
2320, 22eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( j  ^ko  II )  =  K )
2423opeq2d 4409 . . . 4  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  <. (TopSet `  ndx ) ,  ( j  ^ko  II ) >.  =  <. (TopSet `  ndx ) ,  K >. )
2514, 19, 24tpeq123d 4283 . . 3  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  ->  { <. ( Base `  ndx ) ,  { f  e.  ( II  Cn  j
)  |  ( ( f `  0 )  =  y  /\  (
f `  1 )  =  y ) }
>. ,  <. ( +g  ` 
ndx ) ,  ( *p `  j )
>. ,  <. (TopSet `  ndx ) ,  ( j  ^ko  II ) >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  K >. } )
26 unieq 4444 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
2726adantl 482 . . . 4  |-  ( (
ph  /\  j  =  J )  ->  U. j  =  U. J )
28 om1val.j . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
29 toponuni 20719 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3028, 29syl 17 . . . . 5  |-  ( ph  ->  X  =  U. J
)
3130adantr 481 . . . 4  |-  ( (
ph  /\  j  =  J )  ->  X  =  U. J )
3227, 31eqtr4d 2659 . . 3  |-  ( (
ph  /\  j  =  J )  ->  U. j  =  X )
33 topontop 20718 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3428, 33syl 17 . . 3  |-  ( ph  ->  J  e.  Top )
35 om1val.y . . 3  |-  ( ph  ->  Y  e.  X )
36 tpex 6957 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (TopSet ` 
ndx ) ,  K >. }  e.  _V
3736a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  K >. }  e.  _V )
383, 25, 32, 34, 35, 37ovmpt2dx 6787 . 2  |-  ( ph  ->  ( J  Om1  Y )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  K >. } )
391, 38syl5eq 2668 1  |-  ( ph  ->  O  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. (TopSet ` 
ndx ) ,  K >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   {ctp 4181   <.cop 4183   U.cuni 4436   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   ndxcnx 15854   Basecbs 15857   +g cplusg 15941  TopSetcts 15947   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    ^ko cxko 21364   IIcii 22678   *pcpco 22800    Om1 comi 22801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-topon 20716  df-om1 22806
This theorem is referenced by:  om1bas  22831  om1plusg  22834  om1tset  22835
  Copyright terms: Public domain W3C validator