| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om1val | Structured version Visualization version Unicode version | ||
| Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| om1val.o |
|
| om1val.b |
|
| om1val.p |
|
| om1val.k |
|
| om1val.j |
|
| om1val.y |
|
| Ref | Expression |
|---|---|
| om1val |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om1val.o |
. 2
| |
| 2 | df-om1 22806 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | simprl 794 |
. . . . . . . 8
| |
| 5 | 4 | oveq2d 6666 |
. . . . . . 7
|
| 6 | simprr 796 |
. . . . . . . . 9
| |
| 7 | 6 | eqeq2d 2632 |
. . . . . . . 8
|
| 8 | 6 | eqeq2d 2632 |
. . . . . . . 8
|
| 9 | 7, 8 | anbi12d 747 |
. . . . . . 7
|
| 10 | 5, 9 | rabeqbidv 3195 |
. . . . . 6
|
| 11 | om1val.b |
. . . . . . 7
| |
| 12 | 11 | adantr 481 |
. . . . . 6
|
| 13 | 10, 12 | eqtr4d 2659 |
. . . . 5
|
| 14 | 13 | opeq2d 4409 |
. . . 4
|
| 15 | 4 | fveq2d 6195 |
. . . . . 6
|
| 16 | om1val.p |
. . . . . . 7
| |
| 17 | 16 | adantr 481 |
. . . . . 6
|
| 18 | 15, 17 | eqtr4d 2659 |
. . . . 5
|
| 19 | 18 | opeq2d 4409 |
. . . 4
|
| 20 | 4 | oveq1d 6665 |
. . . . . 6
|
| 21 | om1val.k |
. . . . . . 7
| |
| 22 | 21 | adantr 481 |
. . . . . 6
|
| 23 | 20, 22 | eqtr4d 2659 |
. . . . 5
|
| 24 | 23 | opeq2d 4409 |
. . . 4
|
| 25 | 14, 19, 24 | tpeq123d 4283 |
. . 3
|
| 26 | unieq 4444 |
. . . . 5
| |
| 27 | 26 | adantl 482 |
. . . 4
|
| 28 | om1val.j |
. . . . . 6
| |
| 29 | toponuni 20719 |
. . . . . 6
| |
| 30 | 28, 29 | syl 17 |
. . . . 5
|
| 31 | 30 | adantr 481 |
. . . 4
|
| 32 | 27, 31 | eqtr4d 2659 |
. . 3
|
| 33 | topontop 20718 |
. . . 4
| |
| 34 | 28, 33 | syl 17 |
. . 3
|
| 35 | om1val.y |
. . 3
| |
| 36 | tpex 6957 |
. . . 4
| |
| 37 | 36 | a1i 11 |
. . 3
|
| 38 | 3, 25, 32, 34, 35, 37 | ovmpt2dx 6787 |
. 2
|
| 39 | 1, 38 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-topon 20716 df-om1 22806 |
| This theorem is referenced by: om1bas 22831 om1plusg 22834 om1tset 22835 |
| Copyright terms: Public domain | W3C validator |