![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-scmat | Structured version Visualization version Unicode version |
Description: Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in [Connell] p. 57: "A scalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cIn". (Contributed by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
df-scmat |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cscmat 20295 |
. 2
![]() | |
2 | vn |
. . 3
![]() ![]() | |
3 | vr |
. . 3
![]() ![]() | |
4 | cfn 7955 |
. . 3
![]() ![]() | |
5 | cvv 3200 |
. . 3
![]() ![]() | |
6 | va |
. . . 4
![]() ![]() | |
7 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
8 | 3 | cv 1482 |
. . . . 5
![]() ![]() |
9 | cmat 20213 |
. . . . 5
![]() | |
10 | 7, 8, 9 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
11 | vm |
. . . . . . . 8
![]() ![]() | |
12 | 11 | cv 1482 |
. . . . . . 7
![]() ![]() |
13 | vc |
. . . . . . . . 9
![]() ![]() | |
14 | 13 | cv 1482 |
. . . . . . . 8
![]() ![]() |
15 | 6 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
16 | cur 18501 |
. . . . . . . . 9
![]() ![]() | |
17 | 15, 16 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
18 | cvsca 15945 |
. . . . . . . . 9
![]() ![]() | |
19 | 15, 18 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
20 | 14, 17, 19 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 12, 20 | wceq 1483 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | cbs 15857 |
. . . . . . 7
![]() ![]() | |
23 | 8, 22 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
24 | 21, 13, 23 | wrex 2913 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 15, 22 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
26 | 24, 11, 25 | crab 2916 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 6, 10, 26 | csb 3533 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 2, 3, 4, 5, 27 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 1, 28 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: scmatval 20310 |
Copyright terms: Public domain | W3C validator |