MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatval Structured version   Visualization version   Unicode version

Theorem dmatval 20298
Description: The set of  N x  N diagonal matrices over (a ring)  R. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a  |-  A  =  ( N Mat  R )
dmatval.b  |-  B  =  ( Base `  A
)
dmatval.0  |-  .0.  =  ( 0g `  R )
dmatval.d  |-  D  =  ( N DMat  R )
Assertion
Ref Expression
dmatval  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  D  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i m j )  =  .0.  ) } )
Distinct variable groups:    B, m    i, N, j, m    R, i, j, m
Allowed substitution hints:    A( i, j, m)    B( i, j)    D( i, j, m)    V( i,
j, m)    .0. ( i,
j, m)

Proof of Theorem dmatval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.d . 2  |-  D  =  ( N DMat  R )
2 df-dmat 20296 . . . 4  |- DMat  =  ( n  e.  Fin , 
r  e.  _V  |->  { m  e.  ( Base `  ( n Mat  r ) )  |  A. i  e.  n  A. j  e.  n  ( i  =/=  j  ->  ( i m j )  =  ( 0g `  r
) ) } )
32a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  -> DMat  =  ( n  e. 
Fin ,  r  e.  _V  |->  { m  e.  ( Base `  (
n Mat  r ) )  |  A. i  e.  n  A. j  e.  n  ( i  =/=  j  ->  ( i
m j )  =  ( 0g `  r
) ) } ) )
4 oveq12 6659 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
54fveq2d 6195 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  ( N Mat  R ) ) )
6 dmatval.b . . . . . . 7  |-  B  =  ( Base `  A
)
7 dmatval.a . . . . . . . 8  |-  A  =  ( N Mat  R )
87fveq2i 6194 . . . . . . 7  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
96, 8eqtri 2644 . . . . . 6  |-  B  =  ( Base `  ( N Mat  R ) )
105, 9syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
11 simpl 473 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
12 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
13 dmatval.0 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  R )
1412, 13syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
1514adantl 482 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( 0g `  r
)  =  .0.  )
1615eqeq2d 2632 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( i m j )  =  ( 0g `  r )  <-> 
( i m j )  =  .0.  )
)
1716imbi2d 330 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( i  =/=  j  ->  ( i
m j )  =  ( 0g `  r
) )  <->  ( i  =/=  j  ->  ( i m j )  =  .0.  ) ) )
1811, 17raleqbidv 3152 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( A. j  e.  n  ( i  =/=  j  ->  ( i
m j )  =  ( 0g `  r
) )  <->  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  ) ) )
1911, 18raleqbidv 3152 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( A. i  e.  n  A. j  e.  n  ( i  =/=  j  ->  ( i
m j )  =  ( 0g `  r
) )  <->  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  ) ) )
2010, 19rabeqbidv 3195 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  { m  e.  (
Base `  ( n Mat  r ) )  | 
A. i  e.  n  A. j  e.  n  ( i  =/=  j  ->  ( i m j )  =  ( 0g
`  r ) ) }  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i m j )  =  .0.  ) } )
2120adantl 482 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  ->  { m  e.  ( Base `  ( n Mat  r
) )  |  A. i  e.  n  A. j  e.  n  (
i  =/=  j  -> 
( i m j )  =  ( 0g
`  r ) ) }  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i m j )  =  .0.  ) } )
22 simpl 473 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  N  e.  Fin )
23 elex 3212 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
2423adantl 482 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  R  e.  _V )
25 fvex 6201 . . . . 5  |-  ( Base `  A )  e.  _V
266, 25eqeltri 2697 . . . 4  |-  B  e. 
_V
27 rabexg 4812 . . . 4  |-  ( B  e.  _V  ->  { m  e.  B  |  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i m j )  =  .0.  ) }  e.  _V )
2826, 27mp1i 13 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  { m  e.  B  |  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  ) }  e.  _V )
293, 21, 22, 24, 28ovmpt2d 6788 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( N DMat  R )  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  ( i  =/=  j  ->  ( i m j )  =  .0.  ) } )
301, 29syl5eq 2668 1  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  D  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  (
i  =/=  j  -> 
( i m j )  =  .0.  ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   0gc0g 16100   Mat cmat 20213   DMat cdmat 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-dmat 20296
This theorem is referenced by:  dmatel  20299  dmatmulcl  20306  scmatdmat  20321  dmatbas  42192
  Copyright terms: Public domain W3C validator