MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatval Structured version   Visualization version   Unicode version

Theorem scmatval 20310
Description: The set of  N x  N scalar matrices over (a ring)  R. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k  |-  K  =  ( Base `  R
)
scmatval.a  |-  A  =  ( N Mat  R )
scmatval.b  |-  B  =  ( Base `  A
)
scmatval.1  |-  .1.  =  ( 1r `  A )
scmatval.t  |-  .x.  =  ( .s `  A )
scmatval.s  |-  S  =  ( N ScMat  R )
Assertion
Ref Expression
scmatval  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  S  =  { m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) } )
Distinct variable groups:    B, m    K, c    N, c, m    R, c, m
Allowed substitution hints:    A( m, c)    B( c)    S( m, c)    .x. ( m, c)    .1. ( m, c)    K( m)    V( m, c)

Proof of Theorem scmatval
Dummy variables  n  r  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatval.s . 2  |-  S  =  ( N ScMat  R )
2 df-scmat 20297 . . . 4  |- ScMat  =  ( n  e.  Fin , 
r  e.  _V  |->  [_ ( n Mat  r )  /  a ]_ {
m  e.  ( Base `  a )  |  E. c  e.  ( Base `  r ) m  =  ( c ( .s
`  a ) ( 1r `  a ) ) } )
32a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  -> ScMat  =  ( n  e. 
Fin ,  r  e.  _V  |->  [_ ( n Mat  r
)  /  a ]_ { m  e.  ( Base `  a )  |  E. c  e.  (
Base `  r )
m  =  ( c ( .s `  a
) ( 1r `  a ) ) } ) )
4 ovexd 6680 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  -> 
( n Mat  r )  e.  _V )
5 fveq2 6191 . . . . . . 7  |-  ( a  =  ( n Mat  r
)  ->  ( Base `  a )  =  (
Base `  ( n Mat  r ) ) )
6 fveq2 6191 . . . . . . . . . 10  |-  ( a  =  ( n Mat  r
)  ->  ( .s `  a )  =  ( .s `  ( n Mat  r ) ) )
7 eqidd 2623 . . . . . . . . . 10  |-  ( a  =  ( n Mat  r
)  ->  c  =  c )
8 fveq2 6191 . . . . . . . . . 10  |-  ( a  =  ( n Mat  r
)  ->  ( 1r `  a )  =  ( 1r `  ( n Mat  r ) ) )
96, 7, 8oveq123d 6671 . . . . . . . . 9  |-  ( a  =  ( n Mat  r
)  ->  ( c
( .s `  a
) ( 1r `  a ) )  =  ( c ( .s
`  ( n Mat  r
) ) ( 1r
`  ( n Mat  r
) ) ) )
109eqeq2d 2632 . . . . . . . 8  |-  ( a  =  ( n Mat  r
)  ->  ( m  =  ( c ( .s `  a ) ( 1r `  a
) )  <->  m  =  ( c ( .s
`  ( n Mat  r
) ) ( 1r
`  ( n Mat  r
) ) ) ) )
1110rexbidv 3052 . . . . . . 7  |-  ( a  =  ( n Mat  r
)  ->  ( E. c  e.  ( Base `  r ) m  =  ( c ( .s
`  a ) ( 1r `  a ) )  <->  E. c  e.  (
Base `  r )
m  =  ( c ( .s `  (
n Mat  r ) ) ( 1r `  (
n Mat  r ) ) ) ) )
125, 11rabeqbidv 3195 . . . . . 6  |-  ( a  =  ( n Mat  r
)  ->  { m  e.  ( Base `  a
)  |  E. c  e.  ( Base `  r
) m  =  ( c ( .s `  a ) ( 1r
`  a ) ) }  =  { m  e.  ( Base `  (
n Mat  r ) )  |  E. c  e.  ( Base `  r
) m  =  ( c ( .s `  ( n Mat  r )
) ( 1r `  ( n Mat  r )
) ) } )
1312adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  V )  /\  (
n  =  N  /\  r  =  R )
)  /\  a  =  ( n Mat  r )
)  ->  { m  e.  ( Base `  a
)  |  E. c  e.  ( Base `  r
) m  =  ( c ( .s `  a ) ( 1r
`  a ) ) }  =  { m  e.  ( Base `  (
n Mat  r ) )  |  E. c  e.  ( Base `  r
) m  =  ( c ( .s `  ( n Mat  r )
) ( 1r `  ( n Mat  r )
) ) } )
144, 13csbied 3560 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  ->  [_ ( n Mat  r )  /  a ]_ {
m  e.  ( Base `  a )  |  E. c  e.  ( Base `  r ) m  =  ( c ( .s
`  a ) ( 1r `  a ) ) }  =  {
m  e.  ( Base `  ( n Mat  r ) )  |  E. c  e.  ( Base `  r
) m  =  ( c ( .s `  ( n Mat  r )
) ( 1r `  ( n Mat  r )
) ) } )
15 oveq12 6659 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
1615fveq2d 6195 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  ( N Mat  R ) ) )
17 scmatval.b . . . . . . . 8  |-  B  =  ( Base `  A
)
18 scmatval.a . . . . . . . . 9  |-  A  =  ( N Mat  R )
1918fveq2i 6194 . . . . . . . 8  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
2017, 19eqtri 2644 . . . . . . 7  |-  B  =  ( Base `  ( N Mat  R ) )
2116, 20syl6eqr 2674 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
22 fveq2 6191 . . . . . . . . 9  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
23 scmatval.k . . . . . . . . 9  |-  K  =  ( Base `  R
)
2422, 23syl6eqr 2674 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  K )
2524adantl 482 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  r
)  =  K )
2615fveq2d 6195 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  ( .s `  (
n Mat  r ) )  =  ( .s `  ( N Mat  R )
) )
27 scmatval.t . . . . . . . . . . 11  |-  .x.  =  ( .s `  A )
2818fveq2i 6194 . . . . . . . . . . 11  |-  ( .s
`  A )  =  ( .s `  ( N Mat  R ) )
2927, 28eqtri 2644 . . . . . . . . . 10  |-  .x.  =  ( .s `  ( N Mat 
R ) )
3026, 29syl6eqr 2674 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( .s `  (
n Mat  r ) )  =  .x.  )
31 eqidd 2623 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  c  =  c )
3215fveq2d 6195 . . . . . . . . . 10  |-  ( ( n  =  N  /\  r  =  R )  ->  ( 1r `  (
n Mat  r ) )  =  ( 1r `  ( N Mat  R )
) )
33 scmatval.1 . . . . . . . . . . 11  |-  .1.  =  ( 1r `  A )
3418fveq2i 6194 . . . . . . . . . . 11  |-  ( 1r
`  A )  =  ( 1r `  ( N Mat  R ) )
3533, 34eqtri 2644 . . . . . . . . . 10  |-  .1.  =  ( 1r `  ( N Mat 
R ) )
3632, 35syl6eqr 2674 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( 1r `  (
n Mat  r ) )  =  .1.  )
3730, 31, 36oveq123d 6671 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( c ( .s
`  ( n Mat  r
) ) ( 1r
`  ( n Mat  r
) ) )  =  ( c  .x.  .1.  ) )
3837eqeq2d 2632 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  =  ( c ( .s `  ( n Mat  r )
) ( 1r `  ( n Mat  r )
) )  <->  m  =  ( c  .x.  .1.  ) ) )
3925, 38rexeqbidv 3153 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( E. c  e.  ( Base `  r
) m  =  ( c ( .s `  ( n Mat  r )
) ( 1r `  ( n Mat  r )
) )  <->  E. c  e.  K  m  =  ( c  .x.  .1.  ) ) )
4021, 39rabeqbidv 3195 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  { m  e.  (
Base `  ( n Mat  r ) )  |  E. c  e.  (
Base `  r )
m  =  ( c ( .s `  (
n Mat  r ) ) ( 1r `  (
n Mat  r ) ) ) }  =  {
m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) } )
4140adantl 482 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  ->  { m  e.  ( Base `  ( n Mat  r
) )  |  E. c  e.  ( Base `  r ) m  =  ( c ( .s
`  ( n Mat  r
) ) ( 1r
`  ( n Mat  r
) ) ) }  =  { m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) } )
4214, 41eqtrd 2656 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  ->  [_ ( n Mat  r )  /  a ]_ {
m  e.  ( Base `  a )  |  E. c  e.  ( Base `  r ) m  =  ( c ( .s
`  a ) ( 1r `  a ) ) }  =  {
m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) } )
43 simpl 473 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  N  e.  Fin )
44 elex 3212 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
4544adantl 482 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  R  e.  _V )
46 fvex 6201 . . . . . 6  |-  ( Base `  A )  e.  _V
4717, 46eqeltri 2697 . . . . 5  |-  B  e. 
_V
4847rabex 4813 . . . 4  |-  { m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) }  e.  _V
4948a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  { m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) }  e.  _V )
503, 42, 43, 45, 49ovmpt2d 6788 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( N ScMat  R )  =  { m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) } )
511, 50syl5eq 2668 1  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  S  =  { m  e.  B  |  E. c  e.  K  m  =  ( c  .x.  .1.  ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200   [_csb 3533   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   .scvsca 15945   1rcur 18501   Mat cmat 20213   ScMat cscmat 20295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-scmat 20297
This theorem is referenced by:  scmatel  20311  scmatmats  20317  scmatlss  20331
  Copyright terms: Public domain W3C validator