Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sslt Structured version   Visualization version   Unicode version

Definition df-sslt 31897
Description: Define the relationship that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
df-sslt  |-  < <s  =  { <. a ,  b >.  |  ( a  C_  No  /\  b  C_  No  /\  A. x  e.  a  A. y  e.  b  x <s y ) }
Distinct variable group:    a, b, x, y

Detailed syntax breakdown of Definition df-sslt
StepHypRef Expression
1 csslt 31896 . 2  class  < <s
2 va . . . . . 6  setvar  a
32cv 1482 . . . . 5  class  a
4 csur 31793 . . . . 5  class  No
53, 4wss 3574 . . . 4  wff  a  C_  No
6 vb . . . . . 6  setvar  b
76cv 1482 . . . . 5  class  b
87, 4wss 3574 . . . 4  wff  b  C_  No
9 vx . . . . . . . 8  setvar  x
109cv 1482 . . . . . . 7  class  x
11 vy . . . . . . . 8  setvar  y
1211cv 1482 . . . . . . 7  class  y
13 cslt 31794 . . . . . . 7  class  <s
1410, 12, 13wbr 4653 . . . . . 6  wff  x <s y
1514, 11, 7wral 2912 . . . . 5  wff  A. y  e.  b  x <s y
1615, 9, 3wral 2912 . . . 4  wff  A. x  e.  a  A. y  e.  b  x <s y
175, 8, 16w3a 1037 . . 3  wff  ( a 
C_  No  /\  b  C_  No  /\  A. x  e.  a  A. y  e.  b  x <s y )
1817, 2, 6copab 4712 . 2  class  { <. a ,  b >.  |  ( a  C_  No  /\  b  C_  No  /\  A. x  e.  a  A. y  e.  b  x <s y ) }
191, 18wceq 1483 1  wff  < <s  =  { <. a ,  b >.  |  ( a  C_  No  /\  b  C_  No  /\  A. x  e.  a  A. y  e.  b  x <s y ) }
Colors of variables: wff setvar class
This definition is referenced by:  brsslt  31900  dmscut  31918
  Copyright terms: Public domain W3C validator