| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmscut | Structured version Visualization version Unicode version | ||
| Description: The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| dmscut |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab 6741 |
. 2
| |
| 2 | df-scut 31899 |
. . . 4
| |
| 3 | df-mpt2 6655 |
. . . 4
| |
| 4 | 2, 3 | eqtri 2644 |
. . 3
|
| 5 | 4 | dmeqi 5325 |
. 2
|
| 6 | df-sslt 31897 |
. . . . 5
| |
| 7 | 6 | relopabi 5245 |
. . . 4
|
| 8 | 19.42v 1918 |
. . . . . 6
| |
| 9 | ssltss1 31903 |
. . . . . . . . 9
| |
| 10 | vex 3203 |
. . . . . . . . . 10
| |
| 11 | 10 | elpw 4164 |
. . . . . . . . 9
|
| 12 | 9, 11 | sylibr 224 |
. . . . . . . 8
|
| 13 | 12 | pm4.71ri 665 |
. . . . . . 7
|
| 14 | vex 3203 |
. . . . . . . . . 10
| |
| 15 | 10, 14 | elimasn 5490 |
. . . . . . . . 9
|
| 16 | df-br 4654 |
. . . . . . . . 9
| |
| 17 | 15, 16 | bitr4i 267 |
. . . . . . . 8
|
| 18 | 17 | anbi2i 730 |
. . . . . . 7
|
| 19 | riotaex 6615 |
. . . . . . . . 9
| |
| 20 | isset 3207 |
. . . . . . . . 9
| |
| 21 | 19, 20 | mpbi 220 |
. . . . . . . 8
|
| 22 | 21 | biantru 526 |
. . . . . . 7
|
| 23 | 13, 18, 22 | 3bitr2i 288 |
. . . . . 6
|
| 24 | 8, 23, 16 | 3bitr2ri 289 |
. . . . 5
|
| 25 | 24 | a1i 11 |
. . . 4
|
| 26 | 7, 25 | opabbi2dv 5271 |
. . 3
|
| 27 | 26 | trud 1493 |
. 2
|
| 28 | 1, 5, 27 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-riota 6611 df-oprab 6654 df-mpt2 6655 df-sslt 31897 df-scut 31899 |
| This theorem is referenced by: scutf 31919 madeval2 31936 |
| Copyright terms: Public domain | W3C validator |