Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmscut Structured version   Visualization version   Unicode version

Theorem dmscut 31918
Description: The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
dmscut  |-  dom  |s  =  < <s

Proof of Theorem dmscut
Dummy variables  a 
b  c  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 6741 . 2  |-  dom  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) }  =  { <. a ,  b
>.  |  E. c
( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) }
2 df-scut 31899 . . . 4  |-  |s  =  ( a  e. 
~P No ,  b  e.  ( < <s " { a } )  |->  ( iota_ x  e. 
{ y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) )
3 df-mpt2 6655 . . . 4  |-  ( a  e.  ~P No , 
b  e.  ( <
<s " {
a } )  |->  (
iota_ x  e.  { y  e.  No  |  ( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) )  =  { <. <. a ,  b
>. ,  c >.  |  ( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) }
42, 3eqtri 2644 . . 3  |-  |s  =  { <. <. a ,  b >. ,  c
>.  |  ( (
a  e.  ~P No  /\  b  e.  ( <
<s " {
a } ) )  /\  c  =  (
iota_ x  e.  { y  e.  No  |  ( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) }
54dmeqi 5325 . 2  |-  dom  |s  =  dom  { <. <.
a ,  b >. ,  c >.  |  ( ( a  e.  ~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) }
6 df-sslt 31897 . . . . 5  |-  < <s  =  { <. a ,  b >.  |  ( a  C_  No  /\  b  C_  No  /\  A. x  e.  a  A. y  e.  b  x <s y ) }
76relopabi 5245 . . . 4  |-  Rel  < <s
8 19.42v 1918 . . . . . 6  |-  ( E. c ( ( a  e.  ~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e. 
{ y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) )  <->  ( (
a  e.  ~P No  /\  b  e.  ( <
<s " {
a } ) )  /\  E. c  c  =  ( iota_ x  e. 
{ y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) )
9 ssltss1 31903 . . . . . . . . 9  |-  ( a < <s b  ->  a  C_  No )
10 vex 3203 . . . . . . . . . 10  |-  a  e. 
_V
1110elpw 4164 . . . . . . . . 9  |-  ( a  e.  ~P No  <->  a  C_  No )
129, 11sylibr 224 . . . . . . . 8  |-  ( a < <s b  ->  a  e.  ~P No )
1312pm4.71ri 665 . . . . . . 7  |-  ( a < <s b  <-> 
( a  e.  ~P No  /\  a < <s b ) )
14 vex 3203 . . . . . . . . . 10  |-  b  e. 
_V
1510, 14elimasn 5490 . . . . . . . . 9  |-  ( b  e.  ( < <s " { a } )  <->  <. a ,  b
>.  e.  < <s
)
16 df-br 4654 . . . . . . . . 9  |-  ( a < <s b  <->  <. a ,  b >.  e.  < <s )
1715, 16bitr4i 267 . . . . . . . 8  |-  ( b  e.  ( < <s " { a } )  <->  a < <s b )
1817anbi2i 730 . . . . . . 7  |-  ( ( a  e.  ~P No  /\  b  e.  ( <
<s " {
a } ) )  <-> 
( a  e.  ~P No  /\  a < <s b ) )
19 riotaex 6615 . . . . . . . . 9  |-  ( iota_ x  e.  { y  e.  No  |  ( a < <s {
y }  /\  {
y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) )  e.  _V
20 isset 3207 . . . . . . . . 9  |-  ( (
iota_ x  e.  { y  e.  No  |  ( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) )  e.  _V  <->  E. c 
c  =  ( iota_ x  e.  { y  e.  No  |  ( a < <s {
y }  /\  {
y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) )
2119, 20mpbi 220 . . . . . . . 8  |-  E. c 
c  =  ( iota_ x  e.  { y  e.  No  |  ( a < <s {
y }  /\  {
y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) )
2221biantru 526 . . . . . . 7  |-  ( ( a  e.  ~P No  /\  b  e.  ( <
<s " {
a } ) )  <-> 
( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  E. c 
c  =  ( iota_ x  e.  { y  e.  No  |  ( a < <s {
y }  /\  {
y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) )
2313, 18, 223bitr2i 288 . . . . . 6  |-  ( a < <s b  <-> 
( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  E. c 
c  =  ( iota_ x  e.  { y  e.  No  |  ( a < <s {
y }  /\  {
y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) )
248, 23, 163bitr2ri 289 . . . . 5  |-  ( <.
a ,  b >.  e.  < <s  <->  E. c
( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) )
2524a1i 11 . . . 4  |-  ( T. 
->  ( <. a ,  b
>.  e.  < <s  <->  E. c ( ( a  e.  ~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e. 
{ y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) ) )
267, 25opabbi2dv 5271 . . 3  |-  ( T. 
->  < <s  =  { <. a ,  b
>.  |  E. c
( ( a  e. 
~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) } )
2726trud 1493 . 2  |-  < <s  =  { <. a ,  b >.  |  E. c ( ( a  e.  ~P No  /\  b  e.  ( < <s " { a } ) )  /\  c  =  ( iota_ x  e. 
{ y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) ) }
281, 5, 273eqtr4i 2654 1  |-  dom  |s  =  < <s
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {csn 4177   <.cop 4183   |^|cint 4475   class class class wbr 4653   {copab 4712   dom cdm 5114   "cima 5117   ` cfv 5888   iota_crio 6610   {coprab 6651    |-> cmpt2 6652   Nocsur 31793   <scslt 31794   bdaycbday 31795   <
<scsslt 31896   |scscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-riota 6611  df-oprab 6654  df-mpt2 6655  df-sslt 31897  df-scut 31899
This theorem is referenced by:  scutf  31919  madeval2  31936
  Copyright terms: Public domain W3C validator