| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsslt | Structured version Visualization version Unicode version | ||
| Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| brsslt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sslt 31897 |
. . 3
| |
| 2 | 1 | bropaex12 5192 |
. 2
|
| 3 | sseq1 3626 |
. . . 4
| |
| 4 | raleq 3138 |
. . . 4
| |
| 5 | 3, 4 | 3anbi13d 1401 |
. . 3
|
| 6 | sseq1 3626 |
. . . 4
| |
| 7 | raleq 3138 |
. . . . 5
| |
| 8 | 7 | ralbidv 2986 |
. . . 4
|
| 9 | 6, 8 | 3anbi23d 1402 |
. . 3
|
| 10 | 5, 9, 1 | brabg 4994 |
. 2
|
| 11 | 2, 10 | biadan2 674 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-sslt 31897 |
| This theorem is referenced by: ssltex1 31901 ssltex2 31902 ssltss1 31903 ssltss2 31904 ssltsep 31905 sssslt1 31906 sssslt2 31907 nulsslt 31908 nulssgt 31909 conway 31910 sslttr 31914 ssltun1 31915 ssltun2 31916 etasslt 31920 slerec 31923 |
| Copyright terms: Public domain | W3C validator |