| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-symdif | Structured version Visualization version Unicode version | ||
| Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| df-symdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | 1, 2 | csymdif 3843 |
. 2
|
| 4 | 1, 2 | cdif 3571 |
. . 3
|
| 5 | 2, 1 | cdif 3571 |
. . 3
|
| 6 | 4, 5 | cun 3572 |
. 2
|
| 7 | 3, 6 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: symdifcom 3845 symdifeq1 3846 nfsymdif 3848 elsymdif 3849 dfsymdif3 3893 symdif0 4597 symdifv 4598 symdifid 4599 |
| Copyright terms: Public domain | W3C validator |