![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-symdif | Structured version Visualization version Unicode version |
Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
df-symdif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cB |
. . 3
![]() ![]() | |
3 | 1, 2 | csymdif 3843 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 2 | cdif 3571 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 1 | cdif 3571 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | cun 3572 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: symdifcom 3845 symdifeq1 3846 nfsymdif 3848 elsymdif 3849 dfsymdif3 3893 symdif0 4597 symdifv 4598 symdifid 4599 |
Copyright terms: Public domain | W3C validator |