MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifv Structured version   Visualization version   Unicode version

Theorem symdifv 4598
Description: Symmetric difference with the universal class. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifv  |-  ( A  /_\  _V )  =  ( _V  \  A )

Proof of Theorem symdifv
StepHypRef Expression
1 df-symdif 3844 . 2  |-  ( A  /_\  _V )  =  ( ( A  \  _V )  u.  ( _V  \  A ) )
2 ssv 3625 . . . . 5  |-  A  C_  _V
3 ssdif0 3942 . . . . 5  |-  ( A 
C_  _V  <->  ( A  \  _V )  =  (/) )
42, 3mpbi 220 . . . 4  |-  ( A 
\  _V )  =  (/)
54uneq1i 3763 . . 3  |-  ( ( A  \  _V )  u.  ( _V  \  A
) )  =  (
(/)  u.  ( _V  \  A ) )
6 uncom 3757 . . . 4  |-  ( (/)  u.  ( _V  \  A
) )  =  ( ( _V  \  A
)  u.  (/) )
7 un0 3967 . . . 4  |-  ( ( _V  \  A )  u.  (/) )  =  ( _V  \  A )
86, 7eqtri 2644 . . 3  |-  ( (/)  u.  ( _V  \  A
) )  =  ( _V  \  A )
95, 8eqtri 2644 . 2  |-  ( ( A  \  _V )  u.  ( _V  \  A
) )  =  ( _V  \  A )
101, 9eqtri 2644 1  |-  ( A  /_\  _V )  =  ( _V  \  A )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574    /_\ csymdif 3843   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator