| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istlm | Structured version Visualization version Unicode version | ||
| Description: The predicate " |
| Ref | Expression |
|---|---|
| istlm.s |
|
| istlm.j |
|
| istlm.f |
|
| istlm.k |
|
| Ref | Expression |
|---|---|
| istlm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 681 |
. 2
| |
| 2 | df-3an 1039 |
. . . 4
| |
| 3 | elin 3796 |
. . . . 5
| |
| 4 | 3 | anbi1i 731 |
. . . 4
|
| 5 | 2, 4 | bitr4i 267 |
. . 3
|
| 6 | 5 | anbi1i 731 |
. 2
|
| 7 | fveq2 6191 |
. . . . . 6
| |
| 8 | istlm.f |
. . . . . 6
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . 5
|
| 10 | 9 | eleq1d 2686 |
. . . 4
|
| 11 | fveq2 6191 |
. . . . . 6
| |
| 12 | istlm.s |
. . . . . 6
| |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . 5
|
| 14 | 9 | fveq2d 6195 |
. . . . . . . 8
|
| 15 | istlm.k |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . 7
|
| 17 | fveq2 6191 |
. . . . . . . 8
| |
| 18 | istlm.j |
. . . . . . . 8
| |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . . . 7
|
| 20 | 16, 19 | oveq12d 6668 |
. . . . . 6
|
| 21 | 20, 19 | oveq12d 6668 |
. . . . 5
|
| 22 | 13, 21 | eleq12d 2695 |
. . . 4
|
| 23 | 10, 22 | anbi12d 747 |
. . 3
|
| 24 | df-tlm 21965 |
. . 3
| |
| 25 | 23, 24 | elrab2 3366 |
. 2
|
| 26 | 1, 6, 25 | 3bitr4ri 293 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-tlm 21965 |
| This theorem is referenced by: vscacn 21989 tlmtmd 21990 tlmlmod 21992 tlmtrg 21993 nlmtlm 22498 |
| Copyright terms: Public domain | W3C validator |