| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvelimhw | Structured version Visualization version Unicode version | ||
| Description: Proof of dvelimh 2336 without using ax-13 2246 but with additional distinct variable conditions. (Contributed by Andrew Salmon, 21-Jul-2011.) (Revised by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 23-Dec-2018.) |
| Ref | Expression |
|---|---|
| dvelimhw.1 |
|
| dvelimhw.2 |
|
| dvelimhw.3 |
|
| dvelimhw.4 |
|
| Ref | Expression |
|---|---|
| dvelimhw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | equcom 1945 |
. . . . . 6
| |
| 3 | nfna1 2029 |
. . . . . . 7
| |
| 4 | dvelimhw.4 |
. . . . . . 7
| |
| 5 | 3, 4 | nf5d 2118 |
. . . . . 6
|
| 6 | 2, 5 | nfxfrd 1780 |
. . . . 5
|
| 7 | dvelimhw.1 |
. . . . . . 7
| |
| 8 | 7 | nf5i 2024 |
. . . . . 6
|
| 9 | 8 | a1i 11 |
. . . . 5
|
| 10 | 6, 9 | nfimd 1823 |
. . . 4
|
| 11 | 1, 10 | nfald 2165 |
. . 3
|
| 12 | dvelimhw.2 |
. . . . 5
| |
| 13 | dvelimhw.3 |
. . . . 5
| |
| 14 | 12, 13 | equsalhw 2123 |
. . . 4
|
| 15 | 14 | nfbii 1778 |
. . 3
|
| 16 | 11, 15 | sylib 208 |
. 2
|
| 17 | 16 | nf5rd 2066 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |