| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5d | Structured version Visualization version Unicode version | ||
| Description: Deduce that |
| Ref | Expression |
|---|---|
| nf5d.1 |
|
| nf5d.2 |
|
| Ref | Expression |
|---|---|
| nf5d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5d.1 |
. . 3
| |
| 2 | nf5d.2 |
. . 3
| |
| 3 | 1, 2 | alrimi 2082 |
. 2
|
| 4 | nf5-1 2023 |
. 2
| |
| 5 | 3, 4 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: axc16nfOLD 2163 nfaldOLD 2166 dvelimhw 2173 cbv1h 2268 nfeqf 2301 axc16nfALT 2323 nfsb2 2360 distel 31709 bj-cbv1hv 32730 wl-ax11-lem3 33364 |
| Copyright terms: Public domain | W3C validator |