![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e3bi | Structured version Visualization version Unicode version |
Description: Biconditional form of e3 38964. syl8ib 246 is e3bi 38965 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e3bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
e3bi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
e3bi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e3bi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | e3bi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpi 206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | e3 38964 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-vd3 38806 |
This theorem is referenced by: en3lplem2VD 39079 |
Copyright terms: Public domain | W3C validator |