Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elabreximd Structured version   Visualization version   Unicode version

Theorem elabreximd 29348
Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Hypotheses
Ref Expression
elabreximd.1  |-  F/ x ph
elabreximd.2  |-  F/ x ch
elabreximd.3  |-  ( A  =  B  ->  ( ch 
<->  ps ) )
elabreximd.4  |-  ( ph  ->  A  e.  V )
elabreximd.5  |-  ( (
ph  /\  x  e.  C )  ->  ps )
Assertion
Ref Expression
elabreximd  |-  ( (
ph  /\  A  e.  { y  |  E. x  e.  C  y  =  B } )  ->  ch )
Distinct variable groups:    x, y, A    y, B    y, C
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)    B( x)    C( x)    V( x, y)

Proof of Theorem elabreximd
StepHypRef Expression
1 elabreximd.4 . . . 4  |-  ( ph  ->  A  e.  V )
2 eqeq1 2626 . . . . . 6  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
32rexbidv 3052 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  C  y  =  B  <->  E. x  e.  C  A  =  B ) )
43elabg 3351 . . . 4  |-  ( A  e.  V  ->  ( A  e.  { y  |  E. x  e.  C  y  =  B }  <->  E. x  e.  C  A  =  B ) )
51, 4syl 17 . . 3  |-  ( ph  ->  ( A  e.  {
y  |  E. x  e.  C  y  =  B }  <->  E. x  e.  C  A  =  B )
)
65biimpa 501 . 2  |-  ( (
ph  /\  A  e.  { y  |  E. x  e.  C  y  =  B } )  ->  E. x  e.  C  A  =  B )
7 elabreximd.1 . . . 4  |-  F/ x ph
8 elabreximd.2 . . . 4  |-  F/ x ch
9 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  A  =  B )  ->  A  =  B )
10 elabreximd.5 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  ps )
1110adantr 481 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  A  =  B )  ->  ps )
12 elabreximd.3 . . . . . . 7  |-  ( A  =  B  ->  ( ch 
<->  ps ) )
1312biimpar 502 . . . . . 6  |-  ( ( A  =  B  /\  ps )  ->  ch )
149, 11, 13syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  A  =  B )  ->  ch )
1514exp31 630 . . . 4  |-  ( ph  ->  ( x  e.  C  ->  ( A  =  B  ->  ch ) ) )
167, 8, 15rexlimd 3026 . . 3  |-  ( ph  ->  ( E. x  e.  C  A  =  B  ->  ch ) )
1716imp 445 . 2  |-  ( (
ph  /\  E. x  e.  C  A  =  B )  ->  ch )
186, 17syldan 487 1  |-  ( (
ph  /\  A  e.  { y  |  E. x  e.  C  y  =  B } )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   {cab 2608   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202
This theorem is referenced by:  elabreximdv  29349  abrexss  29350  disjabrex  29395  disjabrexf  29396
  Copyright terms: Public domain W3C validator