Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjabrexf Structured version   Visualization version   Unicode version

Theorem disjabrexf 29396
Description: Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Revised by Thierry Arnoux, 9-Mar-2017.)
Hypothesis
Ref Expression
disjabrexf.1  |-  F/_ x A
Assertion
Ref Expression
disjabrexf  |-  (Disj  x  e.  A  B  -> Disj  y  e.  { z  |  E. x  e.  A  z  =  B } y )
Distinct variable groups:    x, y,
z    y, A, z    y, B, z
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem disjabrexf
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfdisj1 4633 . . . 4  |-  F/ xDisj  x  e.  A  B
2 nfcv 2764 . . . . 5  |-  F/_ x
y
3 disjabrexf.1 . . . . . . . . . . 11  |-  F/_ x A
43nfcri 2758 . . . . . . . . . 10  |-  F/ x  i  e.  A
5 nfcsb1v 3549 . . . . . . . . . . 11  |-  F/_ x [_ i  /  x ]_ B
65nfcri 2758 . . . . . . . . . 10  |-  F/ x  j  e.  [_ i  /  x ]_ B
74, 6nfan 1828 . . . . . . . . 9  |-  F/ x
( i  e.  A  /\  j  e.  [_ i  /  x ]_ B )
87nfab 2769 . . . . . . . 8  |-  F/_ x { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }
98nfuni 4442 . . . . . . 7  |-  F/_ x U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }
109nfcsb1 3548 . . . . . 6  |-  F/_ x [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B
1110nfeq1 2778 . . . . 5  |-  F/ x [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y
122, 11nfral 2945 . . . 4  |-  F/ x A. j  e.  y  [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y
13 eqeq2 2633 . . . . 5  |-  ( y  =  B  ->  ( [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y  <->  [_ U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  B ) )
1413raleqbi1dv 3146 . . . 4  |-  ( y  =  B  ->  ( A. j  e.  y  [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y  <->  A. j  e.  B  [_ U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  B ) )
15 vex 3203 . . . . 5  |-  y  e. 
_V
1615a1i 11 . . . 4  |-  (Disj  x  e.  A  B  ->  y  e.  _V )
17 simplll 798 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  (
i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )  -> Disj  x  e.  A  B
)
18 simpllr 799 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  (
i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )  ->  x  e.  A
)
19 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  (
i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )  ->  i  e.  A
)
20 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  (
i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )  ->  j  e.  B
)
21 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  (
i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )  ->  j  e.  [_ i  /  x ]_ B
)
22 csbeq1a 3542 . . . . . . . . . . . . . 14  |-  ( x  =  i  ->  B  =  [_ i  /  x ]_ B )
233, 5, 22disjif2 29394 . . . . . . . . . . . . 13  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  i  e.  A
)  /\  ( j  e.  B  /\  j  e.  [_ i  /  x ]_ B ) )  ->  x  =  i )
2417, 18, 19, 20, 21, 23syl122anc 1335 . . . . . . . . . . . 12  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  (
i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )  ->  x  =  i )
25 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  ->  x  =  i )
26 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  ->  x  e.  A )
2725, 26eqeltrrd 2702 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  -> 
i  e.  A )
28 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  -> 
j  e.  B )
2922eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( x  =  i  ->  (
j  e.  B  <->  j  e.  [_ i  /  x ]_ B ) )
3025, 29syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  -> 
( j  e.  B  <->  j  e.  [_ i  /  x ]_ B ) )
3128, 30mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  -> 
j  e.  [_ i  /  x ]_ B )
3227, 31jca 554 . . . . . . . . . . . 12  |-  ( ( ( (Disj  x  e.  A  B  /\  x  e.  A )  /\  j  e.  B )  /\  x  =  i )  -> 
( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) )
3324, 32impbida 877 . . . . . . . . . . 11  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  (
( i  e.  A  /\  j  e.  [_ i  /  x ]_ B )  <-> 
x  =  i ) )
34 equcom 1945 . . . . . . . . . . 11  |-  ( x  =  i  <->  i  =  x )
3533, 34syl6bb 276 . . . . . . . . . 10  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  (
( i  e.  A  /\  j  e.  [_ i  /  x ]_ B )  <-> 
i  =  x ) )
3635abbidv 2741 . . . . . . . . 9  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  { i  |  ( i  e.  A  /\  j  e. 
[_ i  /  x ]_ B ) }  =  { i  |  i  =  x } )
37 df-sn 4178 . . . . . . . . 9  |-  { x }  =  { i  |  i  =  x }
3836, 37syl6eqr 2674 . . . . . . . 8  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  { i  |  ( i  e.  A  /\  j  e. 
[_ i  /  x ]_ B ) }  =  { x } )
3938unieqd 4446 . . . . . . 7  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  =  U. { x } )
40 vex 3203 . . . . . . . 8  |-  x  e. 
_V
4140unisn 4451 . . . . . . 7  |-  U. {
x }  =  x
4239, 41syl6eq 2672 . . . . . 6  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  =  x )
43 csbeq1 3536 . . . . . . 7  |-  ( U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  =  x  ->  [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  [_ x  /  x ]_ B )
44 csbid 3541 . . . . . . 7  |-  [_ x  /  x ]_ B  =  B
4543, 44syl6eq 2672 . . . . . 6  |-  ( U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  =  x  ->  [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  B )
4642, 45syl 17 . . . . 5  |-  ( ( (Disj  x  e.  A  B  /\  x  e.  A
)  /\  j  e.  B )  ->  [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  B )
4746ralrimiva 2966 . . . 4  |-  ( (Disj  x  e.  A  B  /\  x  e.  A
)  ->  A. j  e.  B  [_ U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  B )
481, 12, 14, 16, 47elabreximd 29348 . . 3  |-  ( (Disj  x  e.  A  B  /\  y  e.  { z  |  E. x  e.  A  z  =  B } )  ->  A. j  e.  y  [_ U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y )
4948ralrimiva 2966 . 2  |-  (Disj  x  e.  A  B  ->  A. y  e.  { z  |  E. x  e.  A  z  =  B } A. j  e.  y  [_ U. {
i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y )
50 invdisj 4638 . 2  |-  ( A. y  e.  { z  |  E. x  e.  A  z  =  B } A. j  e.  y  [_ U. { i  |  ( i  e.  A  /\  j  e.  [_ i  /  x ]_ B ) }  /  x ]_ B  =  y  -> Disj  y  e.  { z  |  E. x  e.  A  z  =  B } y )
5149, 50syl 17 1  |-  (Disj  x  e.  A  B  -> Disj  y  e.  { z  |  E. x  e.  A  z  =  B } y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   F/_wnfc 2751   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533   {csn 4177   U.cuni 4436  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rmo 2920  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-disj 4621
This theorem is referenced by:  measvunilem  30275
  Copyright terms: Public domain W3C validator