MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifvsn Structured version   Visualization version   Unicode version

Theorem eldifvsn 4326
Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
eldifvsn  |-  ( A  e.  V  ->  ( A  e.  ( _V  \  { B } )  <-> 
A  =/=  B ) )

Proof of Theorem eldifvsn
StepHypRef Expression
1 elex 3212 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
21biantrurd 529 . 2  |-  ( A  e.  V  ->  ( A  =/=  B  <->  ( A  e.  _V  /\  A  =/= 
B ) ) )
3 eldifsn 4317 . 2  |-  ( A  e.  ( _V  \  { B } )  <->  ( A  e.  _V  /\  A  =/= 
B ) )
42, 3syl6rbbr 279 1  |-  ( A  e.  V  ->  ( A  e.  ( _V  \  { B } )  <-> 
A  =/=  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-sn 4178
This theorem is referenced by:  cnvimadfsn  7304
  Copyright terms: Public domain W3C validator