| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raldifsnb | Structured version Visualization version Unicode version | ||
| Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| Ref | Expression |
|---|---|
| raldifsnb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4193 |
. . . . . 6
| |
| 2 | nnel 2906 |
. . . . . 6
| |
| 3 | nne 2798 |
. . . . . 6
| |
| 4 | 1, 2, 3 | 3bitr4ri 293 |
. . . . 5
|
| 5 | 4 | con4bii 311 |
. . . 4
|
| 6 | 5 | imbi1i 339 |
. . 3
|
| 7 | 6 | ralbii 2980 |
. 2
|
| 8 | raldifb 3750 |
. 2
| |
| 9 | 7, 8 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-v 3202 df-dif 3577 df-sn 4178 |
| This theorem is referenced by: dff14b 6528 |
| Copyright terms: Public domain | W3C validator |