Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliin2f Structured version   Visualization version   Unicode version

Theorem eliin2f 39287
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
eliin2f.1  |-  F/_ x B
Assertion
Ref Expression
eliin2f  |-  ( B  =/=  (/)  ->  ( A  e.  |^|_ x  e.  B  C 
<-> 
A. x  e.  B  A  e.  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem eliin2f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliin 4525 . . 3  |-  ( A  e.  _V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
21adantl 482 . 2  |-  ( ( B  =/=  (/)  /\  A  e.  _V )  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
3 prcnel 3218 . . . 4  |-  ( -.  A  e.  _V  ->  -.  A  e.  |^|_ x  e.  B  C )
43adantl 482 . . 3  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  -.  A  e.  |^|_ x  e.  B  C )
5 n0 3931 . . . . . . . . 9  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
65biimpi 206 . . . . . . . 8  |-  ( B  =/=  (/)  ->  E. y 
y  e.  B )
76adantr 481 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  E. y  y  e.  B )
8 prcnel 3218 . . . . . . . . . . 11  |-  ( -.  A  e.  _V  ->  -.  A  e.  [_ y  /  x ]_ C )
98a1d 25 . . . . . . . . . 10  |-  ( -.  A  e.  _V  ->  ( y  e.  B  ->  -.  A  e.  [_ y  /  x ]_ C ) )
109adantl 482 . . . . . . . . 9  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  ( y  e.  B  ->  -.  A  e.  [_ y  /  x ]_ C
) )
1110ancld 576 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  ( y  e.  B  ->  ( y  e.  B  /\  -.  A  e.  [_ y  /  x ]_ C
) ) )
1211eximdv 1846 . . . . . . 7  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  ( E. y  y  e.  B  ->  E. y
( y  e.  B  /\  -.  A  e.  [_ y  /  x ]_ C
) ) )
137, 12mpd 15 . . . . . 6  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  E. y ( y  e.  B  /\  -.  A  e.  [_ y  /  x ]_ C ) )
14 df-rex 2918 . . . . . 6  |-  ( E. y  e.  B  -.  A  e.  [_ y  /  x ]_ C  <->  E. y
( y  e.  B  /\  -.  A  e.  [_ y  /  x ]_ C
) )
1513, 14sylibr 224 . . . . 5  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  E. y  e.  B  -.  A  e.  [_ y  /  x ]_ C )
16 eliin2f.1 . . . . . 6  |-  F/_ x B
17 nfcv 2764 . . . . . 6  |-  F/_ y B
18 nfv 1843 . . . . . 6  |-  F/ y  -.  A  e.  C
19 nfcsb1v 3549 . . . . . . . 8  |-  F/_ x [_ y  /  x ]_ C
2019nfel2 2781 . . . . . . 7  |-  F/ x  A  e.  [_ y  /  x ]_ C
2120nfn 1784 . . . . . 6  |-  F/ x  -.  A  e.  [_ y  /  x ]_ C
22 csbeq1a 3542 . . . . . . . 8  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
2322eleq2d 2687 . . . . . . 7  |-  ( x  =  y  ->  ( A  e.  C  <->  A  e.  [_ y  /  x ]_ C ) )
2423notbid 308 . . . . . 6  |-  ( x  =  y  ->  ( -.  A  e.  C  <->  -.  A  e.  [_ y  /  x ]_ C ) )
2516, 17, 18, 21, 24cbvrexf 3166 . . . . 5  |-  ( E. x  e.  B  -.  A  e.  C  <->  E. y  e.  B  -.  A  e.  [_ y  /  x ]_ C )
2615, 25sylibr 224 . . . 4  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  E. x  e.  B  -.  A  e.  C
)
27 rexnal 2995 . . . 4  |-  ( E. x  e.  B  -.  A  e.  C  <->  -.  A. x  e.  B  A  e.  C )
2826, 27sylib 208 . . 3  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  -.  A. x  e.  B  A  e.  C
)
294, 282falsed 366 . 2  |-  ( ( B  =/=  (/)  /\  -.  A  e.  _V )  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C ) )
302, 29pm2.61dan 832 1  |-  ( B  =/=  (/)  ->  ( A  e.  |^|_ x  e.  B  C 
<-> 
A. x  e.  B  A  e.  C )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   E.wex 1704    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916  df-iin 4523
This theorem is referenced by:  eliin2  39299
  Copyright terms: Public domain W3C validator