Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluni2f Structured version   Visualization version   Unicode version

Theorem eluni2f 39286
Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eluni2f.1  |-  F/_ x A
eluni2f.2  |-  F/_ x B
Assertion
Ref Expression
eluni2f  |-  ( A  e.  U. B  <->  E. x  e.  B  A  e.  x )
Distinct variable group:    A, B
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem eluni2f
StepHypRef Expression
1 exancom 1787 . 2  |-  ( E. x ( A  e.  x  /\  x  e.  B )  <->  E. x
( x  e.  B  /\  A  e.  x
) )
2 eluni2f.1 . . 3  |-  F/_ x A
3 eluni2f.2 . . 3  |-  F/_ x B
42, 3elunif 39175 . 2  |-  ( A  e.  U. B  <->  E. x
( A  e.  x  /\  x  e.  B
) )
5 df-rex 2918 . 2  |-  ( E. x  e.  B  A  e.  x  <->  E. x ( x  e.  B  /\  A  e.  x ) )
61, 4, 53bitr4i 292 1  |-  ( A  e.  U. B  <->  E. x  e.  B  A  e.  x )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wex 1704    e. wcel 1990   F/_wnfc 2751   E.wrex 2913   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-uni 4437
This theorem is referenced by:  smfresal  40995  smfpimbor1lem2  41006
  Copyright terms: Public domain W3C validator